
A Hash-based Co-Clustering Algorithm for Categorical Data

Fabrı́cio Olivetti de Françaa

aCenter of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC) – Santo
André, SP, Brazil. E-mail: folivetti@ufabc.edu.br

Abstract

Cluster analysis, or clustering, refers to the analysis of the structural organization of a data set.

This analysis is performed by grouping together objects of the data that are more similar among

themselves than to objects of different groups. The sampled data may be described by numeri-

cal features or by a symbolic representation, known as categorical features. These features often

require a transformation into numerical data in order to be properly handled by clustering algo-

rithms. The transformation usually assigns a weight for each feature calculated by a measure of

importance (i.e., frequency, mutual information). A problem with the weight assignment is that

the values are calculated with respect to the whole set of objects and features. This may pose as

a problem when a subset of the features have a higher degree of importance to a subset of objects

but a lower degree with another subset. One way to deal with such problem is to measure the

importance of each subset of features only with respect to a subset of objects. This is known as

co-clustering that, similarly to clustering, is the task of finding a subset of objects and features that

presents a higher similarity among themselves than to other subsets of objects and features. As one

might notice, this task has a higher complexity than the traditional clustering and, if not properly

dealt with, may present an scalability issue. In this paper we propose a novel co-clustering tech-

nique, called HBLCoClust, with the objective of extracting a set of co-clusters from a categorical

data set, without the guarantees of an enumerative algorithm, but with the compromise of scalabil-

ity. This is done by using a probabilistic clustering algorithm, named Locality Sensitive Hashing,

together with the enumerative algorithm named InClose. The experimental results are competitive

when applied to labeled categorical data sets and text corpora. Additionally, it is shown that the

extracted co-clusters can be of practical use to expert systems such as Recommender Systems and

Topic Extraction.

1

Keywords:

co-clustering, categorical data, data mining, text mining, biclustering

1. Introduction

The abundance of data being collected nowadays demands a set of tools to automatically ex-

tract useful information from them. If the data are partially labeled, a possible information to be

extract is in the form of a mathematical model that can deduce the label from a set of measured

variables, this characterizes the supervised learning. On the other hand, if the data are unlabeled,

the information can be extracted by modeling a group structure of the objects that may describe

the generating process of the data or may give a summarization of the information contained on

it. This is referred as unsupervised learning and it is commonly studied by means of clustering

algorithms.

Data clustering can refer to the task of dividing a data set into subset of objects that are more

similar to each other than to the remaining elements of the set. There is a wide range of ap-

plications such as segmenting a surveyed population (Morgan and Sonquist, 1963) for market

purposes, image quantization (Feng et al., 2007), frequent patterns of gene expressions (de França

and Von Zuben, 2010) and many more.

In order to accomplish such task, the objects of the data set are described by a set of features

measured during the data collection. Each feature can be represented by a numerical quantity,

such as height of a person, amount of gas measured on a car tank, or descriptive characteristic or

category, such as the gender of a person or the research topics they are interested.

The objects described by numerical features can be conveniently represented as numerical

vector and the objects can be naturally compared to each other by using distance metrics. It makes

sense to say that one person has twice the height of another.

On the other hand, categorical features lacks these properties and should be transformed into

numerical features in order to be compared among themselves. For example, describing one person

as male and another as female does not imply that one is more than the other.

Some similarity metrics were proposed to quantify the difference between objects of categori-

cal features (Boriah et al., 2008), mostly based on the matching features between two objects. One
Preprint submitted to Expert Systems with Applications July 16, 2016

example is the Jaccard metric that, given the sets of features for two objects, it calculates the ratio

between the cardinality of the intersection between the two sets and the cardinality of their union.

One problem that must be dealt with when using categorical data is the high dimensionality.

Since most clustering algorithms requires a vectorial representation of the objects, the categorical

features are usually represented as a binary vector, with every position representing whether the

object has a given feature or not. For example, if one measured feature is whether a person is male

or female, it would be represented by a 2-dimensional vector.

But, some categorical features may span into tens, hundreds or even thousands of vector di-

mensions. When describing a song by its genre, each object would be represented as a vector with

more than 1, 500 dimensions. This high dimension exponentially increases the search space and

it can cause a loss of precision on the similarity metrics. This is called the Curse of Dimensional-

ity (Har-Peled et al., 2012).

This problem can be dealt with by reducing the dimensionality of the objects while preserving

the similarity relationship between them. Probabilistic Dimension Reduction (Har-Peled et al.,

2012) is the family of algorithms that exploits the probability that two similar objects will be

considered to be equal when a subset of features is randomly sampled and used for comparison.

One of these algorithms, called Minhashing (Broder, 1997; Zamora et al., 2016), approximates

the Jaccard Index between two objects. This algorithm relies on the fact that the probability of the

first non-zero position of any random permutation of the feature vector is the same for two objects

is equal to the Jaccard Index between them. The algorithm generates a smaller dense representation

of the data with this information.

The reduction of dimensionality has two drawbacks when applied prior the clustering proce-

dure: i) the compact representation may hide some seemingly unimportant features that could be

used to describe a smaller group and, ii) the new set of features will lose its interpretability, since

there is no clear relationship between the original set and the reduced set.

A more direct approach is to perform the data clustering in a two-way manner by finding the

clusters of objects conditioned to a subset of features. This defines the family of algorithms known

as co-clustering.

Data Co-Clustering (de França, 2012; Dhillon et al., 2003; Labiod and Nadif, 2011; Gao and

3

Akoglu, 2014), also known as biclustering, tries to find subsets of objects and features that max-

imizes the similarity of the selected objects when considering the chosen features. It exploits the

fact that a given object may belong to different categories when viewed by different aspects of its

description. For example, a given news text may report a story about the economies of a football

team. This document will have terms that are related to sports and other terms that relates to econ-

omy. So, this object can be assigned to the group of sports related documents and the group of

economy related document, depending of the selected set of words.

This technique allows for many relaxations of the constraints imposed by traditional cluster-

ing 1. For example, each object may belong to more than one group, given a different subset of

features. Additionally, one feature may be used to define different groups, associated with different

subset of features.

Moreover, since each group is explicitly defined by a subset of features, the reason for grouping

together a subset of objects can be easily explained, thus improving the interpretability of the

model.

In many situations these relaxations can benefit the cluster analysis. When a cluster analysis

is performed, it is expected that the natural grouping of the data is related to the intended labeling

of the objective of the study. But, this expectation may not hold true. For example, when trying to

classify a set of animals, the clustering algorithm may correctly identify that lions, deers and horses

belong to the same class, but may incorrectly classify sea lions, octopus and tuna as belonging to

the same class if their common traits are prevalent. The co-clustering of this data set would still

find these groups but, additionally, would find other groups relating sea lions with mammals, tuna

with other fishes and octopus with invertebrates.

Another possibility regards the topics extraction of a textual data set. In this task it is sought

to infer the set of words that describes the topic of each document, based on the analysis of the

whole data set. The usual techniques applied to such task requires a prior knowledge of how

many different topics there are in the corpus and then tries to find the features responsible for

the generative process of each cluster of documents. Again, the restriction of a fixed generative

1Note: these relaxations are not present in every co-clustering algorithm.

4

process for each document (i.e., the generative process of the only cluster it belongs to) may

fail to acknowledge a second or third topic inside the text. With the co-clustering algorithm, the

document can be grouped with different sets of documents regarding different topics and, as this

procedure also highlights the features used to create each cluster, it makes the topic of each cluster

explicit.

Finally, in Recommender Systems a clustering algorithm would group together users with

similar tastes. But then again, only the prevalent common taste of each set of users will be taken

into account. If, for example, a given user rates positively many comedy movies and just a few

action movies, they would be likely grouped together with other users that share a taste for comedy.

On the other hand, the co-clustering algorithm could also assign them to a group of users that like

action movie. Besides, the taste of each user could be described by the combined set of features

of every group they belong to.

But, this flexibility comes with a price, the number of groups that can be found is usually large,

given all the possible combinations of subset of objects and features. Some of these groups may

be irrelevant to the subject of analysis, rendering a burden to the post-analysis procedure.

Some co-clustering algorithms coped with this problem by reintroducing some of the con-

straints of the classical clustering, such as the search for a pre-specified number of clusters and

assigning each object to only one group (Dhillon et al., 2003; Labiod and Nadif, 2011). These

algorithms retain only the explicit description of which features were used as part of the clustering

process.

Despite theses difficulties, there are some co-clustering algorithms capable of dealing with

such flexibility, the most recent being the HBLCoClust (de França, 2012) and CoClusLSH (Gao

and Akoglu, 2014). They both have in common the use of a probabilistic dimension reduction

technique, named Locality Sensitive Hashing (LSH), used to find promising regions with high

probability of containing co-clusters.

In the original HBLCoClust algorithm, after the search for the promising regions, a graph

partitioning technique, called METIS (Karypis and Kumar, 2012), was used in order to generate

5

meaningful results, but constraining the algorithm to a pre-defined number of clusters 2.

This paper proposes a reformulation of HBLCoClust algorithm that does not depend of external

algorithms while maintaining the scalability and automatically determining the number of groups

to return. The general idea is to pre-process the set of features, eliminating those possessed by the

minority of the objects, then the LSH algorithm is applied to the pre-processed data set in order

to identify promising regions to be explored. These regions are then explored by an enumerative

algorithm, called InClose, returning every co-cluster contained inside the given regions. Finally,

the co-clusters sharing a percentage of their elements are merged in order to reduce the number of

groups to be analyzed.

The experimental results will evaluate the groups generated by HBLCoClust through the con-

sistency of the grouped objects according to their labels and the information conveyed by the

subset of features of each group when considering each subset of objects, and scalability with

respect to the number of elements in the data set.

Additionally, some practical implications of the interpretability of the groups will be illustrated

in order to show the usefulness of Data Co-Clustering to different applications.

In Section 2 the co-clustering definition will be described in more details as well as some of its

practical applications. Section 3 explains the proposed algorithm with all of its key aspects. Next,

in Section 4, a complete set of experiments will be performed in order to assess how well the pro-

posed algorithm performs on real-world scenarios against other similar co-clustering algorithms.

Finally, Section 5 will give final comments on this work along with some future perspectives.

2. Co-Clustering

Co-Clustering refers to the task of finding subsets of rows and columns from a data matrix

such as the values of the extracted submatrix presents a desired relationship (de França, 2012;

Dhillon et al., 2003; Labiod and Nadif, 2011; Gao and Akoglu, 2014; Hartigan, 1972; Cheng and

Church, 2000; Mirkin, 1996; de França and Von Zuben, 2010). Usually, the rows and columns are

2It is also worth mentioning that the newest versions of METIS did not compile correctly in some systems, thus

making the HBLCoClust inaccessible to many users

6


1 1 1 1

1 1 1 1

1 1 1 1


(a)


1 1 1 1

2 2 2 2

3 3 3 3


(b)


1 2 3 4

1 2 3 4

1 2 3 4


(c)


3 2 1 5

4 3 2 6

2 1 0 4


(d)

Figure 1: Example of different quality measures: (a) constant bicluster, (b) constant rows, (c) constant columns, (d)

coherent values (rows or columns should exhibit high correlation).

described as objects and features, respectively, from a Data Mining perspective. The relationship

sought by this algorithm will depend of the nature of the data set. Some possible relationships are

the submatrices with constant values, with constant values along the rows or along the columns,

correlated values, values expressing any consistent ordering or dense submatrices from sparse data

(see Fig. 1).

This technique was already applied to a diverse set of applications such as gene expression

analysis (de França and Von Zuben, 2010; de França et al., 2008; Mitra and Banka, 2006; Coelho

et al., 2009), text mining (Dhillon et al., 2003; de Castro et al., 2010), recommendation sys-

tems (Symeonidis et al., 2008; de Castro et al., 2007) and data imputation (de França et al.,

2013). The most popular application of the co-clustering algorithms is the search for additive

coherence (de França and Von Zuben, 2011) from a large gene expression data.

Recently, there has been an increase of interest on the extraction of information of categorical

data sets, such as text document data. These data sets are composed by a set of documents de-

scribed by the tokenized terms. A co-cluster of this data set would represent a subset of documents

that exclusively share a subset of these terms. Hopefully, this subset of terms describes the topic

of the set of documents.

Formally, given the set O of objects and the set F of observed features, a Co-Cluster C of a

subset O′ ⊂ O, a subset F′ ⊂ F and a relation R ⊂ O × F can be described as:

C(O′, F′) = {O′ × F′ | o ∈ O′, f ∈ F′ ∧ (o, f) ∈ R} , (1)

where O′ and F′ can also be denoted as the objects and features clusters, respectively.

The relation R contains all the tuples (o, f) inside the data set. Notice, though, that the con-

7

straint that every pair of object and feature of the co-cluster must exist in R may lead to a large set

of very small groups.

So, in order to minimize the number of groups while maximizing the size of such groups, the

previous equation can be reformulated as:

C(O′, F′) = {O′ × F′ | |R′| ≥ ρ · |O′ × F′|} , (2)

where |.| is the cardinality of a set and

R′ = {(o, f) ∈ R | o ∈ O′, f ∈ F′} . (3)

Notice that there is no restriction whether an object or a feature must belong to only one group.

There are other possible variations of this problem such as the k, l−Co-Clustering, in which it seeks

to partition the data into k objects clusters and l features clusters by maximizing the number of non-

null elements from the submatrices induced by each combination of k and l. Specifically, in this

work, the focus will be on the formulation given in Eq. 2.

3. Hash-based Linear Co-Clustering

This section will describe some fundamental definitions and algorithms in order to better un-

derstand the proposed algorithm. First, the basics of probabilistic data clustering through random

hash functions will be introduced. Following, the enumerative algorithm, called InClose, will be

explained and, finally, the proposed algorithm will be detailed.

3.1. Locality Sensitive Hashing

A popular algorithm when dealing with high dimensional and high volume sets of data is a

probabilistic algorithm called Locality Sensitive Hashing (LSH). This algorithm exploits the fact

that two very similar samples will likely collide when mapped by a weak hash function. In fact,

depending on how this hash function is created, the probability of this collision is known to be

proportional to their similarity.

One of such hash functions is the Minwise Independent Permutation (Minhash) (Carter and

Wegman, 1979; Har-Peled et al., 2012) that states that the probability of collision of two hashed
8

objects is proportional to their Jaccard similarity. Jaccard Index or Jaccard Similarity is used when

the data set is described through sets of categorical features. This similarity can be calculated as:

J =
|o1 ∩ o2|

|o1 ∪ o2|
, (4)

where o1 and o2 are the two objects being compared. The Jaccard Index varies from 0 to 1, with

the later meaning that the two objects are equal.

Given a predefined order for the set of features, the Minhash algorithm generates a random

permutation π of this set and take the first feature describing each object as its representative

feature. The probability that two objects have the same representative feature is given by:

P(oπ1 = oπ2) =
|o1 ∩ o2|

|o1 ∪ o2|
, (5)

that is equal to the Jaccard Index.

So, the expected value of the Jaccard Index is estimated by averaging the number of collisions

of two objects over k independent random permutations. Since generating random permutations

can be computationally expensive, the permutation is approximated by an universal hash function

such as the one proposed in (Carter and Wegman, 1979):

h(x) = a · x + b mod P, (6)

where a and b are randomly chosen numbers from an uniform distribution, and P is a large prime

number. The variable x is the value to be hashed, i.e., a number associated with the original index

of the ordered set of features. Notice that, this prime number should be at least as large as the

number of features. This hash function will map each original index to an index in the range

[0, P[.

The Minhash of an object j for permutation i is simply the feature index x that minimizes the

hash function hi(x):

mhi(O j) = arg min
x

{
hi(x) | ∀x ∈ O j

}
. (7)

9

Given a data set of n objects, each object containing an average of m̄ observed features, out of

m possible features, and k hash functions. The complexity of this algorithm is O(n · m̄ · k), with

m̄ << m on sparse data sets.

This idea was extended in (Har-Peled et al., 2012) as an scalable algorithm for the Nearest-

Neighbor problem named Locality Sensitive Hashing (LSH). This algorithm creates p hash signa-

tures for each object by grouping together a sequence of k Minhashes. Each signature represents a

bucket and the probability that two objects o1 and o2 will collide into the same bucket is given by:

Pcollision(o1, o2) = 1 − (1 − Jk)p) (8)

where J is their Jaccard Index, k is the number of minhashes used to build one hash signature and

p is the number of hash signatures.

The values of k and p can be adjusted to maximize the probability of grouping together the

objects with a desired similarity of J.

It is interesting to notice that each bucket groups together a subset of objects and is described

as a subset of k common features. So, the LSH can be used to find a variable number of co-clusters

with k features. We will show in the next sections that these co-clusters can be used to limit the

search space prior to the application of an enumerative algorithm.

3.2. Enumerative Algorithm for Co-Clustering

In mathematics, there is a very similar field of study called Formal Concept Analysis (Andrews,

2011) (FCA). In this field, the data set is described as a Formal Context composed of a triple

C = (O, F,R) where O stands for the set of objects, F is the set of features and R ⊆ O × F is

the binary relationship of the objects with respect to the set of features. If a given object o ∈ O

contains the feature f ∈ F, then (o, f) ∈ R. In FCA, the objective is to find pairs (O′, F′), called

formal concept of context C such as:

• every object in O′ has every feature in F′,

• for every o ∈ O, o < O′, there is one f ′ ∈ F′ such that (o, f ′) < R,

• for every f ∈ F, f < F′, there is one o′ ∈ O′ such that (o′, f) < R.
10

In other words, this technique seeks the maximal subset of objects O′ and the subset of features

F′ that satisfies Eq. 1.

In (Andrews, 2009) the enumerative algorithm InClose was proposed and further improved

in (Andrews, 2011). This algorithm guarantees the exact set of formal concepts (i.e., co-clusters)

without generating the same solution more than once (i.e., avoiding redundant search).

For the sake of brevity and clarity, the InClose algorithm will be explained following the nota-

tions used in the previous sections (i.e., formal concepts will be called co-clusters from now on)

and with a small adaptation that will be explained later in this section.

The general idea of the algorithm is to recursively enumerate the Co-Clusters by following

the lexicographical order of the feature set F, expanding the current co-cluster until it becomes

maximal and branching the algorithm to explore new candidate solutions.

Initially, the algorithm starts with the initial co-cluster (O′, F′) where O′ = O, the entire set of

objects and F′ = { f }, a subset containing the first feature of F when following the lexicographical

order.

By following the lexicographical order of the features in F, the algorithm sequentially creates

a new set F′′ = F′ ∪ f ′ for every feature f ′ ∈ F that is positioned after f . For each F′′ it generates

a new set O′′ that satisfies Eq. 1.

After this step, the subset F′ is merged with every generated set F′′ whenever the correspond-

ing O′′ = O′, in other words, F′ will contain every feature that maintains the integrity of the set

O′, maximizing the co-cluster.

The remaining pairs (O′′, F′′) will be passed to a recursive call of the algorithm together with

f ′ = F′′ ∩ F′ as long as (O′′, F′′) is cannonical with respect to f ′.

A Co-Cluster (O′, F′) is considered cannonical with respect to a feature f if and only if there

is no feature f ′ < f that can be inserted into F′ such as Eq. 1 is still satisfied. This verification is

required to avoid redundancy.

The InClose algorithm is summarized in Alg. 1. Notice that two other parameters are included

in this algorithm: minObjs and minFeats, that are used to discard co-clusters smaller than these

thresholds.

11

Algorithm 1: InClose
input : (global) data set of objects, features and relations (O, F,R), minimum cardinality

for the cluster of objects minObjs and the cluster of features minFeats.

input : (local) initial subset of objects O′ and features F′, and current feature f .

output: set of Co-Clusters C

/* Insert new features in lexicographical order. */

Insertions ←
{
(f ′,O′′) | f ′ ∈ F ∧ f ′ < f ∧ |O′′| ≥ minObjs

with O′′ = O′ ∩ {o′′ ∈ O | (o′′, f ′) ∈ R}
}
;

/* Generate the maximal co-cluster with the fixed set O′. */

F′ ← F′ ∪
{
f ′ | (f ′,O′′) ∈ Insertions ∧ O′′ = O′

}
;

/* List of candidates to be recursively expanded. */

Candidates ←
{
(O′′, F′ ∪ { f ′}, f ′) | (O′′, f ′) ∈ Insertions ∧ Cannonical(O′′, F′)

}
;

if |F′| ≥ minFeats then

/* The operator ++ means concatenation. */

return
{
(O′, F′)

}
+ +

{
InClose(O′′, F′′, f ′) | (O′′, F′′, f ′) ∈ Candidates

}
;

else

return
{
InClose(O′′, F′′, f ′) | (O′′, F′′, f ′) ∈ Candidates

}
;

3.3. Hash-Based Linear Co-Clustering Algorithm

The Hash-based Linear Co-Clustering algorithm was initially proposed in (de França, 2012)

as an scalable algorithm to find k Co-Clusters from a categorical data set. This algorithm can be

divided in three simple steps:

1. Find a co-cluster set C composed of a set of tuples (O′, F′) by applying the LSH algorithm.

The set O′ is composed of the objects inside a bucket and the set F′ is the set of k features

used as a hash signature.

2. Maximize the co-clusters in C by inserting features in F′ while satisfying Eq. 1 and then

inserting objects in O′ obeying the same constraint.

3. Induce a graph from the set C where the vertices are the objects and the edges connect two

12

objects that belongs to the same co-cluster. After that, perform the community detection

algorithm METIS (Karypis and Kumar, 2012) to find a set of k co-clusters.

The third step is needed because the second step generates a high number of small co-clusters

when dealing with a sparse data set. But, this steps introduced theoretical and technical drawbacks.

For the theoretical drawbacks, the complexity of the first two steps is O(n) with n representing

the cardinality of the set of relations R. The third step introduces a complexity proportional to

O(m3) Kernighan and Lin (1970), with m representing the number of vertices of the induced graph

or, in this case, the cardinality of the set of objects O. Also, this algorithms introduce a number of

different parameters that should be adjusted, together with the inherent parameters of HBLCoClust.

Besides, it constrains the co-clusters to a k−co-clustering algorithm, with a pre-specified k.

About the technical drawbacks, there were some issues for the compilation process under some

Operational Systems that prevented the use of the HBLCoClust and the reproduction of the original

experiments was compromised.

In order to eliminate the dependency of an external implementation and the constraint of defin-

ing the number of clusters, we now propose a new version of HBLCoClust by following these six

steps:

1. Remove rare features: remove any feature f ∈ F such as
∣∣∣∣{o | (o, f) ∈ R}

∣∣∣∣ ≤ τ · ∣∣∣∣O∣∣∣∣, for an

specified 0 ≤ τ ≤ 1 [optional].

2. Find the promising regions with LSH: apply the LSH algorithm to find a set of 2 · p

candidates tuples (O′, F′) with k features by bucketing the objects with hash signatures from

the features set and, also, bucketing a set of features with hash signatures from the objects

set.

3. Create subsets of the original data set: expand each candidate (O′, F′) creating a set of

promising regions (O′′, F′′) such as O′′ = {o ∈ O | (o, f) ∈ R ∧ f ∈ F′} and F′′ = { f ∈ F |

(o, f) ∈ R ∧ o ∈ O′}.

4. Enumerate inside the promising regions: apply the InClose algorithm to every promising

region thus creating the co-clusters set C = {(O′′′, F′′′)}. The duplicated regions can be

avoided by storing the already explored regions on a hash table.
13

5. Expand the co-clusters by allowing sparseness: sequentially insert objects and features

into every co-cluster such as
∣∣∣∣{(o, f) < R | o ∈ O′′′ ∧ f ∈ F′′′}

∣∣∣∣ ≤ τsparse ·

∣∣∣∣O′′′∣∣∣∣ · ∣∣∣∣F′′′∣∣∣∣, for an

specified 0 ≤ τsparse ≤ 1 [optional].

6. Merge related co-clusters: merge any two co-clusters that shares the same subset of fea-

tures.

In the first step, the algorithm optionally removes any feature that appears in less than a per-

centage of the objects O. This step avoids that, during the next stage, the LSH algorithm samples

one of these rare features to compose the hash signature. This may create a bucket containing a

single object, thus generating an uninteresting region.

The second step is similar to the original algorithm. It first generates p·k random hash functions

and then creates p buckets for every object by grouping k keys generated by the hash functions (see

Section 3.1). Additionally, it creates another set of p · k random hash functions and then creates

p buckets for every feature by grouping the keys generated from the hash functions applied to the

objects set. This step generates a candidate set of regions to be explored.

For every generated region, a new subset of the original data set is created with the subset

of objects that contains a relationship with every feature of the specified region and, similarly, a

subset of features that are related to every object of the region. This creates a sparse subset that

contains at least one co-cluster (as defined by (O′, F′)).

These regions are then used by the enumerative algorithm InClose to find the complete set of

co-clusters. Since this algorithm only enumerates co-clusters that satisfies Eq. 1, the next step

optionally insert objects and features that do not violate Eq. 2. The order of insertion is defined by

the number of missing values each element introduces to the co-cluster.

Finally, since every co-cluster was generated from a constrained region of the original data set

and further expanded by the introduction of sparseness, some co-clusters may share the same set

of features but with a different set of objects. For this purpose, those co-clusters sharing the same

set of features are merged together.

The HBLCoClust algorithm requires a total of six parameters, some of them optional: the min-

imum relative frequency of features (τ, optional), the number of buckets (p) and number of hash

14

functions per bucket (k), the minimum cardinality for the objects and features subsets (minObjs and

minFeats), required by InClose, and the maximum allowed percentage of missing values (τsparse,

optional). The sensitivity of these parameters will be shown in the next Section.

The pseudo-algorithm for HBLCoClust is depicted in Alg. 2 and followed by some auxiliary

routines in Algs. 4 and 3.

One important thing to notice regarding the proposed algorithm is that the first three steps

have a linear complexity with respect to the cardinality of the relations set R, the fourth step is

exponential proportional to the number of clusters contained inside the Regions created in step 3.

The last two steps are quadratic with respect to the average co-cluster cardinality. We will show

in the next Section empirical evidence that the whole algorithm scales linearly with respect to the

cardinality of R for the tested data sets.

3.4. Literature review

In the literature, the most similar algorithm to HBLCoClust is the one proposed in (Gao and

Akoglu, 2014) and called CoClusLSH. This algorithm iteratively applies the LSH algorithm using

the set of objects and features alternately, and merging the groups defined by the buckets using

an entropic metric. The authors tested CoClusLSH on a diverse set of real world data, presenting

competitive numerical results measured by purity, mutual information and number of groups found

(the closest to the number of labels, the better). The algorithm is linearly scalable regarding the

number of objects and features on the data set but, it does require that the whole data set resides in

memory during the processing stage.

Another co-clustering algorithm that recently presented good results is the SpecCo (Labiod

and Nadif, 2011) which reformulates the co-clustering problem as a graph partitioning problem.

It then optimizes the modularity criteria (Newman, 2006) in order to find a set of k, l-clusters.

The obtained results were quantitatively better than some of the considered state-of-the-art co-

clustering algorithms. But, unlike HBLCoClust and CoClusLSH, this algorithm requires a pre-

specified number of clusters and it does not scale linearly.

In the next section, we will compare the results obtained by HBLCoClust with those obtained

by CoClusLSH and SpecCo.

15

input : data set of objects, features and relations (O, F,R), minimum cardinality for the

cluster of objects minObjs and the cluster of features minFeats, threshold of

minimum frequency of features τ, the number of buckets p and hash functions per

buckets k and the maximum ratio of missing data τsparse.

output: set of Co-Clusters C

/* Step 1: Removal of rare features */

F ←
{
f | f ∈ F ∧ count (f) ≥ τ · |O|

}
;

/* Step 2: LSH */

B← RandomBucketFunctions(p, k);

for o ∈ O do

for b ∈ B do

/* Bucket is an associative array where the key is a set of

features and the value is a set of objects */

Bucket[b(o)]← Bucket[b(o)] ∪ {o};

/* Step 3: Candidate Regions */

Regions←
{
Region(O′, F′) | (O′, F′) ∈ Bucket

}
;

/* Step 4: Enumeration */

C ←
{
InClose(O′′, F′′, f) | (O′′, F′′) ∈ Regions ∧ f = head(F′′)

}
;

/* Step 5: Expansion */

C ←
{
Expand(O′′′, F′′′) | (O′′′, F′′′) ∈ C

}
;

/* Step 6: Merge */

for c1, c2 ∈ C ×C do

if F′′′1 = F′′′2 then

c1 ← c1 ∪ c2;

Remove(c2);

return C

16

Algorithm 2: function Region
input : subset of objects O′ and subset of features F′.

output: subsets O′′, F′′ defining a search space.

O′′ ←
{
o | o ∈ O if (o, f) ∈ R for ∀ f ∈ F′

}
;

F′′ ←
{
f | f ∈ F if (o, f) ∈ R for ∀o ∈ O′

}
;

return (O′′, F′′)

Algorithm 3: function Expand
input : subset of objects O′ and subset of features F′.

output: subsets O′′, F′′ respecting maximum missing values rate τsparse.

O∗ ← sort O by number of sparse features ;

F∗ ← sort F by number of sparse objects ;

O′′ ← {o | o ∈ O∗ if constraint is respected };

F′′ ← { f | f ∈ F∗ if constraint is respected };

return (O′′, F′′)

4. Experimental Results

In the Section we will present some experiments with the HBLCoClust algorithm on three

different types of data sets: categorical, textual and rating data. The categorical data sets, as

previously discussed, are sets comprised of objects described by one or more features from a set

F. The textual data are acquired from text documents extracted from newsgroups, in these data

sets, each document represents one object and every word is a feature from the set.

Finally, the rating data set was specifically created for this paper by combining a data set of

ratings given by users on a set of movies and a set of descriptive features for the set of movies.

The objects for this set are the users and the features are composed of the name and keyword of

the movies concatenated with words describing whether the users liked or disliked the movie.

For the categorical and textual data sets, the obtained results will be quantitatively compared

to the algorithms InClose, CoClusLSH and SpecCo, with some exceptions. The InClose algorithm

results will be available only for the data sets which the total processing time did not take more

17

than 5 hours. For the CoClusLSH, we could only obtain the results for the categorical data sets,

due to memory limitations. Finally, due to the unavailability of the SpecCo source code, we will

use the reported values in (Labiod and Nadif, 2011).

The HBLCoClust and InClose algorithms were implemented in Python 2.7 and it is readily

available at https://github.com/folivetti/HBLCoClust. The experiments with the algo-

rithm CoClusLSH were performed using the Matlab implementation available at http://www.

cs.sunysb.edu/~leman/pubs.html. These algorithms were run under a Linux Debian 7.6 sys-

tem on a i5-2450 @ 2.5 GHz machine with 6GB of RAM.

4.1. Data sets and Experiments

In order to have a concise discussion of the experiments, they will be divided into five dif-

ferent subsections: Categorical Data Clustering, Text Clustering, Topic Modeling, Recommender

Systems, Scalability and Sensitivity analysis.

The Categorical Data Clustering subsection will have the goal of finding groups of objects that

share common features. For this purpose we have selected four well known categorical data sets

named: Zoo, House Votes 84’, Sybean Small and Soybean Large Bache and Lichman (2013). All

four data sets are described by categorical features and a label that classifying each object. The

features may be many-valued or binary, as described in (Labiod and Nadif, 2011), the many-valued

features are converted to binary. The labels will be used to measure the quality of the co-clusters

found by the algorithms. Notice that, even though it is expected a set of clusters grouping together

objects with the same label, this does not imply the inexistence of groups with objects of different

labels.

The Text Clustering subsection will comprehend a similar experiment as described for the cat-

egorical data clustering. The only practical difference being the high dimensionality. For this set of

experiments we chose the data sets Classic3 3, containing documents from 3 different collections,

and two subsets of the 20-newsgroups (Lang, 1995) data set, named Multi5 and Multi10.

The Multi5 data set contains documents from the groups: comp.graphics, rec.sport.baseball,

rec.motorcycle, sci.space, and talk.politics.mideast. The Multi10 data set contains documents

3ftp://ftp.cs.cornell.edu/pub/smart

18

extracted from: alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos, rec.sport.hockey,

sci.electronics, sci.crypt, sci.med, sci.space, talk.politics.guns.

Regarding the Topic Modeling subsection, we will just illustrate one possible practical ap-

plication of co-clustering algorithms. As such, we will show some evidence that the subset of

features found by HBLCoClust algorithm for each group can be used to describe the topic con-

cerning the corresponding subset of documents. For this purpose we will use the results from the

Text Clustering subsection.

Similarly, the Collaborative Filtering subsection will illustrate how a co-clustering algorithm

can be used to find some explicit information regarding subset of users sharing the same taste.

For this experiment we will merge the information of two well known data sets, named Movie-

lens (Herlocker et al., 1999) and IMDB ftp://ftp.fu-berlin.de/pub/misc/movies/database/

in order to generate a categorical data set of movies ratings.

The Movielens Data Set contains a set of 80, 000 tuples (user, movie, rating) with the users

represented by their id, the movies represented by their titles and the ratings as a numbered scale

between 1 to 5.

This data was complemented by using the keywords, genre, actors and actress, and directors

describing each movie provided by the IMDB data set. These keywords were used to form the

relations (user, feature, rating), where rating is the average rating given by the user to movies

possessing this feature.

This data set was then converted to a set of tuples (user, feature Y) or (user, feature N), whether

the rating was higher than 3 or not, respectively.

The HBLCoClust algorithm was applied separately to the Y and N relations in order to generate

co-clusters of likes and dislikes for each subset of users.

Every user was then described by means of the features exclusively contained in the clusters

of the likes data set they belonged to and the features in the dislikes data set as well.

To assess the recommendation error, a test set of 20, 000 tuples (user, movie, rating) was con-

verted to a categorical data in the same way as the training data. For every (user, movie) in the test

set, the Jaccard Index of the likes and dislikes profiles of this user is calculated against the movie

features set. The profile with higher similarity is used to decide whether to recommend the movie

19

Table 1: Data set properties: number of objects, number of features, the number of relations (non-zero elements) and

number of classes.

|O| |F| |R| classes

Zoo 101 16 738 7

Soybean Small 47 21 880 4

Soybean Large 307 35 4865 19

House Vote 84 435 16 6568 2

Classic 3 3891 15034 227355 3

Multi 5 5000 44323 539933 5

Multi 10 10000 64444 987443 10

Movielens 943 4233 154628 −

or not.

Besides exemplifying with the generated profiles, the results will be compared to two com-

monly used machine learning algorithms: regularized SVD (Funk, 2006) and Naive Bayes (Lewis,

1998).

In Table 1 the properties of each data set used on these experiments are summarized. The

adopted parameters for the HBLCoClust are depicted in Table 2 for each data set. These values

were found by performing a grid search in order to maximize the coverage of the objects in the

data set, with the combination of the following values for each parameter: minOb js = [2, 50],

minFeats = [2, 50], p = {1000, 2000, 3000, 4000, 5000}, k = {2, 3, 4, 5}, τ = [0, 1] with intervals

of 0.05, τsparse = [0, 1] with intervals of 0.1.

For the InClose parameters, we have adopted the same values of minOb js and minFeats as

chosen for HBLCoClust. The parameters of the CoClusLSH algorithm was fixed to p = 100 and

k = 3 after a grid search with the combination of the values of p = 100, 200, 300 and k = 2, 3, 4.

This limited set of values was due to memory limitations imposed by the algorithm.

Finally, the parameters for the SpecCo algorithm were the same as reported in (Labiod and

Nadif, 2011) due to the unavailability of the source code.

20

Table 2: Parameters used for HBLCoClust on each data set.

data set minObjs minFeats p k τ τsparse

Zoo 4 6 1000 2 0.0 1.0

Soybean Small 4 8 1000 2 0.1 0.8

Soybean Large 4 10 1000 2 0.0 0.8

House Vote 84 10 10 1000 3 0.4 0.8

Classic 3 50 4 2000 3 0.2 0.5

Multi 5 5 5 1000 3 0.95 0.5

Multi 10 5 5 2000 3 0.95 0.5

Movielens 2 2 5000 4 0.0 0.8

4.2. Metrics

In order to quantify the quality of the Co-Clusters obtained by each algorithm, we have chosen

three different metrics: Purity, Normalized Mutual Information and Pointwise Mutual Information.

Purity of a Co-Cluster measures the ratio between the number of the most frequent label inside

the cluster by the number of objects in the cluster. It essentially quantifies, for a given cluster, if

the majority of its objects agree with respect to their labels.

Normalized Mutual Information calculates how likely it is to find an object of a given label

if a given co-cluster is selected at random. This metric is related to Purity, but it also verifies the

compactness of the Co-Clusters set, i.e. if the set has a minimum number of Co-Clusters and is

given by:

NMI =
1

HCHl

∑
c∈C,o∈O′

P(c, l(o)) × log
P(c, l(o))

P(c)P(l(o))
, (9)

where HC,Hl is the entropy of the Co-Clusters set and the labels, respectively, O′ is the subset of

objects of the co-cluster, and l(o) is the label of object o.

Finally, the Pointwise Mutual Information measures the likelihood that the co-occurrence of

any two features of a Co-Cluster was not by chance. This verifies if the subset of features selected

by the Co-Cluster have significance regarding the corresponding objects:

21

PMI = −
∑

O f∈C

∑
f 1, f 2∈O f

log P(f 1, f 2) − log P(f 1)P(f 2)
log P(f 1, f 2)

. (10)

4.3. Categorical Data Clustering

The results for the first set of experiments, categorical data, are depicted in Table 3 and 4.

These Tables show the average results over 30 runs of HBLCoClust and CoClusLSH, a single run

of InClose and the reported results for SpecCo. The first table reports the number of Co-Clusters

found by each algorithm, the percentage of the covered objects and features and the average size

of the Co-Clusters. The second table reports the average value of Purity, NMI and PMI.

From Table 3 we can notice some interesting properties of each algorithm. First of all, InClose

algorithm obtained the largest set of co-clusters with the largest size, something that should be ex-

pected since it is an enumerative algorithm. Also, since this algorithm only finds dense co-clusters,

it was not always capable of covering the entire set of objects. Comparing the HBLCoClust and

CoClusLSH algorithms, the later found a smaller number of groups while covering the entire set

of objects, except for the Zoo data set. This means that CoClusLSH was more competent when

maximizing the compactness. Since the number of groups is a parameter of SpecCo, it always

returned the exact number of expected clusters.

In Table 4 we can see that, except for the Zoo Data Set, the HBLCoClust obtained the best,

or close to the best, results regarding Purity and PMI. Regarding the NMI metric, the SpecCo has

again the advantage of generating a compact set of groups, thus maximizing this metric. In the

Zoo Data Set, though the proposed algorithm has not obtained the best results, it was close to the

best values. It is worth highlighting that, a consistent high PMI value means that the algorithm is

capable of selecting the significant features.

4.4. Text Clustering

For the second set of experiments, regarding the textual data, neither InClose algorithm nor

CoClusLSH could be used due to limitation in computational or memory complexity. Also, the

comparison will be limited to the reported values in (Labiod and Nadif, 2011) for the SpecCo

algorithm. It should be noticed that, the data sets used in (Labiod and Nadif, 2011) differs from

22

Table 3: Statistics of obtained Co-Clusters set for the Categorical data sets.

Zoo # Objs. Feats. Size

HBLCoClust 27.07 1.00 0.80 83.07

CoClusLSH 37.00 1.00 1.00 52.00

InClose 67.00 0.81 0.75 114.00

SpecCo 7.00 1.00 −− −−

Soybean S # Objs. Feats. Size

HBLCoClust 13.80 1.00 57.78 83.13

CoClusLSH 10.00 1.00 1.00 225.00

InClose 225.00 1.00 70.83 121.00

SpecCo 4.00 1.00 −− −−

Soybean L # Objs. Feats. Size

HBLCoClust 42.40 1.00 0.74 205.73

CoClusLSH 20.00 1.00 1.00 1089.00

InClose 6470.00 0.98 0.93 109.00

SpecCo 19.00 1.00 −− −−

House Votes # Objs. Feats. Size

HBLCoClust 23.30 1.00 0.85 1173.80

CoClusLSH 18.00 1.00 1.00 734.00

InClose 124371 0.95 1.00 225.00

SpecCo 2.00 1.00 −− −−

the ones used in our experiment. The Classic3 data set used only a setof 150 documents and 3, 625

features, and the Multi5 and Multi10 data sets used a selection of 500 documents and 2, 000 words.

These selections were performed by means of a supervised algorithm in order to use only the most

significant word-features regarding the document labels.

Notice that, for our experiment with HBLCoClust we have used the entire data. So, the focus of

this experiment will be on assessing if our proposed algorithm is capable of automatically selecting

23

the correct set of features without the use of a supervised algorithm.

Table 4: Obtained results for the categorical data sets.

zoo Purity NMI PMI

HBLCoClust 0.88 0.29 0.18

CoClusLSH 0.79 0.25 0.29

InClose 0.93 0.19 0.21

SpecCo 0.90 0.92 −−

Soybean S Purity NMI PMI

HBLCoClust 0.89 0.40 0.25

CoClusLSH 0.56 0.30 0.08

InClose 0.59 0.09 −0.26

SpecCo 1.00 1.00 −−

Soybean L Purity NMI PMI

HBLCoClust 0.73 0.26 0.15

CoClusLSH 0.28 0.09 0.06

InClose 0.50 0.07 0.13

SpecCo 0.67 0.78 −−

House Votes Purity NMI PMI

HBLCoClust 0.91 0.29 0.43

CoClusLSH 0.85 0.24 0.45

InClose 0.93 0.10 0.26

SpecCo 0.87 0.47 −−

In Table 5 we can see that, as explained by the aforementioned situation, the HBLCoClust

algorithm returned a much larger set of clusters when compared to SpecCo. Also, even though

dealing with a larger set of documents, it still managed to cover the entirety of the objects.

Interesting, in Table 6 we can see that HBLCoClust obtained a purity value equal or much

higher than the results obtained by SpecCo. This means that, even though it resulted in a larger

24

Table 5: Statistics of obtained Co-Clusters set for the Textual data sets.

Classic3 # Objs. Feats. Size

HBLCoClust 219.20 1.00 0.60 2807.23

SpecCo 3.00 1.00 −− −−

Multi5 # Objs. Feats. Size

HBLCoClust 1054.97 1.00 0.18 1051.23

SpecCo 5.00 1.00 −− −−

Multi10 # Objs. Feats. Size

HBLCoClust 2819.33 1.00 0.16 661.00

SpecCo 10.00 1.00 −− −−

set of clusters, those clusters are accurate regarding the labels. The lower value of Purity obtained

by SpecCo is a side-effect of the pre-determined number of clusters, since there are clusters of

documents on these data sets pertaining to the same topic that do not share any feature. Concerning

the PMI, the HBLCoClust algorithm still managed to obtain a high positive value, thus assessing

the quality of the select subsets of features for each cluster.

4.5. Topic Modeling

The PMI metric is a very popular metric for assessing the quality of Topic Modeling algo-

rithms. These algorithms try to search for a set of words of a corpus that correctly describes the

topic of each document. A value of PMI around 0.5 is considered good for the newsgroup data

sets, as we can see in (Anandkumar et al., 2013), while the most well-known algorithm for Topic

modeling, Latent Dirichlet Allocation (Blei et al., 2001), obtains a value around 0.2.

To illustrate the quality of the obtained subsets of features, in Table 7 we report the terms

belonging to the set of features of 5 different clusters, one from each topic of Multi5 data set,

chosen at random. It is easy to see that most of these terms are meaningful words revolving

around the corresponding topic.

25

Table 6: Obtained results for the Textual data sets.

Classic3 Purity NMI PMI

HBLCoClust 0.86 0.14 0.20

SpecCo 0.86 0.73 −−

Multi5 Purity NMI PMI

HBLCoClust 0.91 0.18 0.37

SpecCo 0.59 0.53 −−

Multi10 Purity NMI PMI

HBLCoClust 0.82 0.14 0.33

SpecCo 0.57 0.55 −−

4.6. Recommender System

Regarding the Movielens data set, the HBLCoClust algorithm obtained a total of 1, 320 co-

clusters covering 60% of the users and only 63% of the movies. As such, from the total of 20, 000

test ratings, we could generate a recommendation (or a not recommended classification) to 12, 862

ratings. From this total, the co-clustering based recommendation obtained an accuracy of 83.4%

against 79.68% and 69.32% obtained by SVD and Naive Bayes, respectively.

Additionally, the information given by the profiles of each user may enrich the post-analysis

of the recommender system by giving directions of what can be more relevant to a given user. In

Table 8, the profiles of a randomly selected user is depicted.

4.7. Scalability and Sensitivity of the algorithm

As a final experiment, we have measured the time taken by HBLCoClust for each one of the

experimental data sets with a fixed set of parameters: p = 1000, k = 3, minOb js = minFeats = 4,

τ = 0.0, τsparse = 1.0.

In Fig. 2 we can see the correlation between the time, in seconds, with the number of relations

inside each data set, fitted with a regression line. This experiment corroborates with the claim that

the algorithm scales linearly proportional to the cardinality of the set of relations.

26

Table 7: Terms extracted from features clusters of Multi5 data set.

sport.baseball reds, houston, standings, cincinnati, colorado, mets, scores, marlins, includ-

ing, milwaukee, oakland, pirates, city, expos, los, west, indians, minnesota,

ocf, rangers, joseph, white, angels, texas, giants, toronto, pittsburgh, phillies,

cardinals, cubs, atlanta, mariners, orioles, mlb, lost, braves, louis, detroit,

teams, athletics, streak, hernandez, san, boston, cleveland, dodgers, sox, seat-

tle, astros, blue, diego, jays, jtchern, rockies, twins, brewers, tigers, red, fran-

cisco, philadelphia, kansas, yesterday, royals, california, padres, berkeley,

league, chicago, florida, angeles, april, montreal, yankees, baltimore, york

motorcycles handlebars, motorcycle, speed, countersteering, foward, handle, faq, awful,

turns, debating, ummm, uiuc, happens, turning, pushing, fgc, convert, unb,

explain, duke, unbvm, acpub, slack, zkcl, infante, cbr, eric, cso, csd, methinks,

push

politics.mideast later, muslims, ohanus, vol, turkish, involved, roads, argic, hand, muslim, ar-

menian, document, russian, armenians, including, army, sahak, proceeded,

serdar, soul, killed, among, children, published, blood, appressian, mountain,

often, exists, turks, armenia, general, soviet, serve, escape, genocide, melko-

nian, ways, extermination, passes, closed

sci.space six, rigel, aurora, wings, mary, dfrf, alaska, dryden, spin, military, facility,

speak, unknown, digex, prb, flight, pilot, fly, kotfr, air, nsmca, pat, edwards,

mig, wire, fighter, shafer

comp.graphics plot, recommend, pascal, hidden, routines, object, basic, cost, address, bob,

cad, mac, info, frame, short, offer, animation, price, sites, across, package,

low, building, directory, removal, documentation, robert, built, recommenda-

tions, libraries, various, tasks, shading, fast, files, code, objects, tools, handle,

demo, library, contact, book

27

Table 8: Profile generated for one of the user on Movielens data set.

Movies Jaws, Back to the Future, Twelve Monkeys, Dumb & Dumber, ...

like disaster, infidelity, horse, gunfight, USA, automobile, hospital, bathroom,

jealousy, racism, elevator, fight, beer, male-nudity, helicopter, impale-

ment, good-versus-evil, outer-space, murder, washington-d.c., fire, shot-

to-death, los-angeles-california, independent-film, small-town, train, drunk-

enness, one-man-army, baby, teenage-boy, lifting-someone-into-the-air, re-

demption, f-word, photograph, tough-guy, gangster, main-character-dies

dislike second-part, beaten-to-death, haunted-by-the-past, Washing-

ton,DistrictofColumbia,USA, cell-phone, vengeance, bulletproof-vest,

obsession, book, die-hard-scenario

0 200000 400000 600000 800000 1000000
size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

tim
e (

se
c.)

Figure 2: Time complexity estimation.

28

2 4 6 8 10 12 14 16 18 20
minobjs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
u
ri
ty

Purity

#Clusters (right)

15

20

25

30

35

40

45

#
 o
f
C
lu
st
e
rs

(a)

2 4 6 8 10 12
minfeats

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
u
ri

ty

Purity

#Clusters (right)

0

20

40

60

80

100

#
 o

f
C

lu
st

e
rs

(b)

Figure 3: Parameter sensitivity for (a) minObjs and (b) minFeats.

Regarding the sensitivity of the parameters, we have devised a short experiment in order to

assess how the values of each parameter affects the Purity and the number of clusters found by the

algorithm.

For this purpose we have chosen the House Vote 84’ data set, the largest of the categorical data

sets used in this paper. In this experiment, we have tested 10 different values for every parameter

around the values described in Sect. 4.1 while fixing the remaining parameters with the same

values from this table.

The results will be reported through line plots where the left y-axis represents the Purity value

associated to each value of the parameter, and the right y-axis is the number of clusters found

by the algorithm. Notice that the y-axis of all the plots are fixed between [0.6, 1.0] in order to

highlight the significance of the variations, while the right axis varies according to the results, in

order to verify the tendency of generating more or less clusters.

In Fig. 3 we can see that the parameters minObjs and minFeats do not seem to affect the Purity

of the clusters found by the algorithm. On the other hand, the more restricted the number of objects

and features, a smaller number of clusters are found. This means that the algorithm will maintain

29

500 600 700 800 900 1000 1100 1200 1300 1400
p

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
u
ri

ty

Purity

#Clusters (right)

16

18

20

22

24

26

28

30

#
 o

f
C

lu
st

e
rs

(a)

2 3 4 5 6 7 8 9 10 11
k

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
u
ri

ty

Purity

#Clusters (right)

18

19

20

21

22

23

24

25

26

27

#
 o

f
C

lu
st

e
rs

(b)

Figure 4: Parameter sensitivity for (a) k and (b) p.

the quality of the clusters regardless of how many of them are found.

In Fig. 4, we can see the sensitivity analysis for the parameters pertaining to the LSH algorithm.

We can still observe that the Purity is not much affected by these parameters as well. The number

of clusters seems to be more affected by the number of buckets. More buckets mean that we will

create more possibilities for finding different groups, thus leading to a higher number of clusters

at the final stage.

Finally, in Fig. 5, we can see that the pre-processing stage, controlled by τ, affects only the

number of clusters found, the higher the cutoff, less features will remain in the data set and less

clusters can be found. The sparse parameter, on the other hand, does affect the Purity and the

number of clusters. When this parameter is set to 1, it will only find dense clusters and, thus, the

purity tends to be maximized, but it is less likely to find few larger clusters. When the parameter

is set to 0, the whole data set can be assigned to the same cluster, thus minimizing the Purity and

returning a single cluster.

30

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
τ

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
u
ri

ty

Purity

#Clusters (right)

30

35

40

45

50

55

60

65

#
 o

f
C

lu
st

e
rs

(a)

0.0 0.2 0.4 0.6 0.8 1.0
τsparse

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
u
ri

ty

Purity

#Clusters (right)

0

50

100

150

200

250

300

350

400

#
 o

f
C

lu
st

e
rs

(b)

Figure 5: Parameter sensitivity for (a) τ and (b) τsparse

5. Conclusion

In this paper a new algorithm for the co-clustering of categorical data was presented. This

algorithm consists of six sequential steps and scales linearly with the number of non-empty entries

of the data set. This is achieved by using a probabilistic algorithm to approximate the partial

similarity between objects, thus creating seed co-clusters. These seed co-clusters are used to

define regions of the data set to be searched by an enumerative algorithm called InClose, finally

merging the Co-Clusters found inside these different regions.

The experiments performed on categorical and textual data showed that this algorithm is at

least on par with other co-clustering algorithms from the literature, and in many times significantly

better. Most noticeably, the algorithm was capable of selecting subsets of features that maximized

the point-wise mutual information, leading to a meaningful set of features describing each cluster.

Some examples were provided illustrating the practical implications of having an explicit sub-

set of features. In one of these examples, the features of the text data clusters were used to describe

the topic of a group of documents. In another example, the descriptive features were used to gen-

erate a profile of what a given user likes or not in a movie.

31

Despite the good results, the proposed algorithm has a tendency of dividing the data sets into

a larger set of clusters, when compared to other algorithms, though this may imply a more natural

segmentation of the data. Also, the number of parameters may require an additional effort to

adjust, in some situations.

For future research, we intend to propose heuristic algorithms to automatically suggest the

values of some of the required parameters by using entropic metrics and knowledge extracted from

basic statistics of the data set. This will be performed together with a more detailed sensitivity

analysis.

Additionally, we will explore in more details the idea of using co-clustering algorithms for

Topic Modeling and Recommender Systems, as well as some other possible applications.

References

Anandkumar, A., Valluvan, R., et al., 2013. Learning loopy graphical models with latent variables: Efficient methods

and guarantees. The Annals of Statistics 41, 401–435.

Andrews, S., 2009. In-close, a fast algorithm for computing formal concepts, in: International Conference on Con-

ceptual Structures.

Andrews, S., 2011. In-close2, a high performance formal concept miner, in: Conceptual Structures for Discovering

Knowledge. Springer, pp. 50–62.

Bache, K., Lichman, M., 2013. UCI machine learning repository. URL: http://archive.ics.uci.edu/ml.

Blei, D.M., Ng, A.Y., Jordan, M.I., 2001. Latent dirichlet allocation, in: Advances in neural information processing

systems, pp. 601–608.

Boriah, S., Chandola, V., Kumar, V., 2008. Similarity measures for categorical data: A comparative evaluation. red

30, 3.

Broder, A.Z., 1997. On the resemblance and containment of documents, in: Compression and Complexity of Se-

quences 1997. Proceedings, IEEE. pp. 21–29.

Carter, J., Wegman, M.N., 1979. Universal classes of hash functions. Journal of Computer and System Sciences 18,

143 – 154.

de Castro, P.A.D., de França, F.O., Ferreira, H.M., Coelho, G.P., Von Zuben, F.J., 2010. Query expansion using an

immune-inspired biclustering algorithm. Natural Computing , 1–24.

Cheng, Y., Church, G.M., 2000. Biclustering of expression data, in: Proc. of the 8th Int. Conf. on Intelligent Systems

for Molecular Biology, pp. 93–103.

32

Coelho, G.P., de França, F.O., Von Zuben, F.J., 2009. Multi-objective biclustering: When non-dominated solutions

are not enough. Journal of Mathematical Modelling and Algorithms .

de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J., 2007. Applying Biclustering to Perform Collabo-

rative Filtering, in: Proc. of the 7th International Conference on Intelligent Systems Design and Applications, Rio

de Janeiro, Brazil. pp. 421–426.

Dhillon, I.S., Mallela, S., Modha, D.S., 2003. Information-theoretic co-clustering, in: Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining, ACM. pp. 89–98.

Feng, H.M., Chen, C.Y., Ye, F., 2007. Evolutionary fuzzy particle swarm optimization vector quantization learning

scheme in image compression. Expert Systems with Applications 32, 213–222.

de França, F.O., Coelho, G.P., Von Zuben, F.J., 2008. bicaco: An ant colony inspired biclustering algorithm, in: Ant

Colony Optimization and Swarm Intelligence. Springer, pp. 401–402.

de França, F.O., Coelho, G.P., Von Zuben, F.J., 2013. Predicting missing values with biclustering: A coherence-based

approach. Pattern Recognition 46, 1255–1266.

de França, F.O., 2012. Scalable overlapping co-clustering of word-document data, in: Machine Learning and Appli-

cations (ICMLA), 2012 11th International Conference on, IEEE. pp. 464–467.

de França, F.O., Von Zuben, F.J., 2010. Finding a high coverage set of 5-biclusters with swarm intelligence, in:

Evolutionary Computation (CEC), 2010 IEEE Congress on, IEEE. pp. 1–8.

de França, F.O., Von Zuben, F.J., 2011. Extracting additive and multiplicative coherent biclusters with swarm intelli-

gence, in: Evolutionary Computation (CEC), 2011 IEEE Congress on, IEEE. pp. 632–638.

Funk, S., 2006. Netflix update: Try this at home.

Gao, T., Akoglu, L., 2014. Fast information-theoretic agglomerative co-clustering, in: Wang, H., Sharaf, M. (Eds.),

Databases Theory and Applications. Springer International Publishing. volume 8506 of Lecture Notes in Computer

Science, pp. 147–159.

Har-Peled, S., Indyk, P., Motwani, R., 2012. Approximate nearest neighbor: Towards removing the curse of dimen-

sionality. Theory OF Computing 8, 321–350.

Hartigan, J.A., 1972. Direct clustering of a data matrix. Journal of the American Statistical Association (JASA) 67,

123–129.

Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J., 1999. An algorithmic framework for performing collaborative

filtering, in: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development

in information retrieval, ACM. pp. 230–237.

Karypis, G., Kumar, V., 2012. Metis-serial graph partitioning and fill-reducing matrix ordering.

Kernighan, B.W., Lin, S., 1970. An efficient heuristic procedure for partitioning graphs. Bell system technical journal

49, 291–307.

Labiod, L., Nadif, M., 2011. Co-clustering for binary and categorical data with maximum modularity., in: ICDM, pp.

33

1140–1145.

Lang, K., 1995. Newsweeder: Learning to filter netnews, in: Proceedings of the Twelfth International Conference on

Machine Learning, pp. 331–339.

Lewis, D.D., 1998. Naive (bayes) at forty: The independence assumption in information retrieval, in: Machine

learning: ECML-98. Springer, pp. 4–15.

Mirkin, B., 1996. Mathematical Classification and Clustering. Nonconvex Optimization and Its Applications,

Springer.

Mitra, S., Banka, H., 2006. Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition

39, 2464–2477.

Morgan, J.N., Sonquist, J.A., 1963. Problems in the analysis of survey data, and a proposal. Journal of the American

statistical association 58, 415–434.

Newman, M.E., 2006. Modularity and community structure in networks. Proceedings of the national academy of

sciences 103, 8577–8582.

Symeonidis, P., Nanopoulos, A., Manolopoulos, Y., 2008. Providing justifications in recommender systems. Systems,

Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 38, 1–1272.

Zamora, J., Mendoza, M., Allende, H., 2016. Hashing-based clustering in high dimensional data. Expert Systems

with Applications 62, 202–211.

34

