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Abstract—Many practical problems are described by an
objective-function with the intent to optimize a single goal. This
leads to the important research topic of nonlinear optimization,
that seeks to create algorithms and computational methods that
are capable of finding a global optimum of such functions. But,
many functions are multimodal, having many different global
optima. Also, given the impossibility to create an exact model
of a real-world problem, not every global (or local) optima is
feaseable to be conceived. As such, it is interesting to find as many
alternative optima in order to find one that is feaseable given
unmodelled constraints. This paper proposes a methodology that,
given a local optimum, it finds nearby local optima with similar
objective-function values. This is performed by maximizing the
approximation error of a Linear Interpolation of the function.
The experiments show promising results regarding the number
of detected peaks when compared to the state-of-the-art, though
requiring a higher number of function evaluations on average.

Keywords—multimodal optimization, niching, nonlinear opti-
mization.

I. INTRODUCTION

Multimodal Optimization may refer to the task of finding
one global optimum in multimodal functions or the problem
of finding as many optima, global or local, as possible to
be chosen by a decision maker afterwards. The first task
motivated the creation of populational algorithms, notably the
Evolutionary Algorithms [1], [2], [3], that manage to explore
the search space while still exploiting the local neighborhood.
Although the idea of a population of solutions improved the
exploration when compared to traditional local search, in some
cases it was proven insufficient due to a large number of
deceiving local optima.

One way to deal with such problems were with the use
of Niching techniques [4], [5], [6] that tries to create rewards
when the algorithm maintains the diversity of a population or
punishments when the population converges to a single local
optimum.

The second definition of multimodal optimization was
motivated by practical applications in which, after the end of
the optimization process, the decision maker realized that the
solution found was unfeasible [7]. This happens because many
real-world problems are impossible to be perfectly modelled by
a mathematical function and constraints or when the problem
is affected by some uncertainties [8].

This problem was also solved using Niching techniques
enforcing the output of multiple solutions. Additionaly, this
motivated the creation of specific computational methods spe-
cially crafted to find multiple optima, such as the immune-
inspired approaches [8], [9], [10].

As these methods aim at exploring distinct regions of
the search space, expecting to find the basis of attraction
of different global optima, they often use a distance metric
to determine whether two points are sufficiently far apart.
Most algorithms use the Euclidean distance but this poses
as a problem in order to find the right definition of what is
sufficiently far apart.

In [8] a distance measure called Line Distance was intro-
duced to solve this problem. This measures is defined as the
error of the approximation of a linear interpolation between
two points to the real function. In other words, if two points
are located at the same side of the same basis of attraction
of a local optimum, the linear interpolation will correctly
approximate the objective-function, thus leading to a small
error. If they are located in different optima, the error will
be larger, bounded by the peak height.

Although this measure do not completly solve the afore-
mentioned problem, it makes easier to correctly define a
threshold for closeness that works for most objective-functions.
It has been shown that the threshold setting is quite robust in
many multimodal functions [6].

In this paper, the Line Distance between a solution and
its nearest-neighbor will replace the original fitness function.
By doing so, each solution is expected to evolve to a distinct
local optima. The proposed algorithm will take inspirations
from Artificial Immune Systems and Niching techniques.

The paper is organized as follows: Section II will explain
the calculation of the Line Distance, further simplifying its
calculation. Section III devises a computational method to
find many local optima by maximizing this distance. Sec-
tion IV will evaluate such method by means of a well-known
benchmark for multimodal optimization. Finally, Section V
concludes this papers with some insights for future work.

II. LINE DISTANCE

The Line Distance was first proposed in [8] in order to
measure the similarity between two solutions in an Artificial
Immune Systems Algorithm (AIS). The AIS algorithm, named978-1-4799-7492-4/15/$31.00 c©2015 IEEE



dopt-aiNet (artificial immune Network for dynamic optimiza-
tion), was conceived to generate a network of dissimilar solu-
tions, each of which located at a different local optima. This
dissimilarity measure was used in the context of a suppression
mechanism to prune the network of solutions to retain only
unique solutions.

The Line Distance between two points in Euclidean Space,
x1, x2 ∈ <n, with objective-function values of y1 and y2,
respectively, is calculated by first creating a middle point
xm = 0.5(x1 + x2) with objective-function value ym, and
then measuring the distance between the n + 1-dimensional
point Pm = [xm, ym] to the segment defined by P1 = [x1, y1]
and P2 = [x2, y2].

The distance between this point to this segment is given
by:

LD(x1, x2) = ‖Pproj‖

with

Pproj = P1Pm − (P1Pm · v)v

v =
P2 − P1

‖P2 − P1‖

P1Pm = [
x2 − x1

2
, ym − y1]

By simplifying this equation 1 we have:

LD(P1, P2) =

√
((y1+y22 − ym)2

∑
i (x

i
2 − xi1)2)∑

i (x
i
2 − xi1)2) + (y2 − y1)2

(1)

As we can see, the rationale for this measure is that, if the
line created by x1 and x2 approximates the objective-function
curve, then these points must be at the same basis of attraction.
But, on the other hand, if the approximation has a larger error,
it means they must be located at different local optimum (see
Fig. 1).

Theorem 1 (Infinity Scaling): By scaling the objective-
function f(x) by a constant K, even if K →∞, it will have
an insignificant effect on the Line Distance whenever the two
points are located at the same basis of attraction.

Proof: If we scale the objective-function and replace these
values on Eq. 1 we have:

LD(P1, P2) =

√
K2((y1+y22 − ym)2

∑
i (x

i
2 − xi1)2)∑
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i
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K )2) + (y2 − y1)2
)

1the step-by-step simplification of this equation is available at
http://nbviewer.ipython.org/github/folivetti/LINKEDOPT/blob/master/
LineDistance.ipynb

Fig. 1. Depiction of Line Distance with LD(x1, x2) = 0.55 and
LD(x2, x3) = 0.01.

As K →∞, we have that x2−x1

K → 0 and, thus:

LD(P1, P2) =

√
((y1+y22 − ym)2

∑
i (x

i
2 − xi1)2)

(y2 − y1)2
.

Notice that if the two points are close to each other, the ef-
fects of this simplification will be minimal, since x2−x1) will
be close to 0. But, if they are far apart, the Line Distance will
be increased since its denominator becomes smaller compared
to Eq. 1.

To avoid a discontinuity whenever y1 = y2 we add:

LD(P1, P2) =

√
((y1+y22 − ym)2

∑
i (x

i
2 − xi1)2)

(y2 − y1)2 + ε
. (2)

With this simplification the dissimilarity values of the pre-
vious example become LD(x1, x2) = 7.66 and LD(x2, x3) =
0.01.

The Line Distance metric is closely related to the Hill
Valley Algorithm [11], an algorithm that samples a number of
intermediate points in order to infer whether two points were
located at the same basis of attraction. For a maximization
objective, if any intermediate point has a higher objective-
function value than the tested points, then they are located
at the same basis of attraction. They both exploit the approx-
imation to the objective-function, but they do differ in some
points:

• Line Distance is formulated as a mathematical func-
tion while Hill Valley is an algorithm.



• Hill Valley will return 0 whenever it detects that both
points are at the same basis or a continuous value
if they are not, Line Distance will always return a
continuous value representing how close the points are
from each other.

• If every interior point fails to find a higher peak, Hill
Valley may report a false negative, Line Distance will
report a false positive if the middle point hits a peak
of the same height.

• If two points are at opposite sides from the same basis
of attraction, Hill Valley will detect it, Line Distance
will not.

This last point was an important factor to choose the Line
Distance for the proposed algorithm, as it will be required that
both sides of a basis of attraction are preserved for further
exploration.

III. MAXIMIZATION OF LINE DISTANCE

The rationale for maximizing the Line Distance is that each
solution of a populational algorithm will improve only if it
moves farther away from its neighbors and into a local optima.
Following this intuition, the first idea would be to just replace
the objective-function of each solution with the average Line
Distance of this solution to the whole population. But by doing
so, it will lead to some problems.

First, if two points x1 and x2 are not located at two
adjacents optima, the middle point xm may be located at a
different local optima of equal height that stands between
them. This wrongly makes the Line Distance between these
two points assume a value close to zero. Notice that this
situation may not be rare in functions with evenly distributed
local optima.

Second, the improvement of one solution will affect all
other solutions thus defining a noisy objective-function that
can be hard to deal with.

As such, to avoid these problems, a new meta-heuristic
will be proposed to take advantage of the maximization of
the Line Distance. This meta-heuristic is inspired by two
already established algorithms, Artificial Immune Network for
Dynamic Optimization (dopt-aiNet) [8], that has a dynamic
population size in order to adapt to the number of local
optima, and Nearest-better Clustering Algorithm (NEA2) [12]
that works by segmenting the search space by measuring the
distance of a solution to its nearest neighbor, then applying the
CMA-ES algorithm [13] to each of the found regions.

The whole idea is to devise a heuristic that, given a local
optimum, finds another nearby local optimum. By starting with
a single solution, the population will be dynamically created by
applying this heuristic to each existing solution and expanding
the explored search space. In order to organize the population
of solutions, they will be organized as a network of local
optima.

So, the proposed meta-heuristic starts with a single node
network representing a solution located at the middle of the
search space. At every iteration, it samples a set of nodes
from the population and, for each sampled node, it applies
a local search heuristic to connect it to its nearest optimum

given a random direction, thus creating a new edge. After
some iterations, the network is rebuilt by eliminating redundant
nodes that are within a radius of each other. The edges are then
recreated by connecting each node to its nearest neighbor.

A general description of this algorithms, named Linke-
dOpt 2, is given in Alg. 1 and it is followed by a more
descriptive explanation.

input : max iterations maxIT , number of expanded
nodes per iteration nnodes, radius of similarity
thrE, thrL, lower and upper bound of the
objective-function lb, ub

output: network of solutions G

x0 ← lb+ 0.5 · (ub− lb);
InsertNode(G, x0);
for it← 1 to maxIT do

nodes← SelectNodes(G,nnodes);
G← ExpandNodes(G,nodes, thrE);
G← Suppress(G, thrE, thrL);

end
Algorithm 1: LinkedOpt meta-heuristic

The function SelectNodes() will sample nnodes nodes
from the network at random but with probability inversely
proportional to their degree. This probability ensures that the
nodes located at unexplored areas (the leaves of a tree-like
structure) will have preference to be expanded, while those at
already explored areas are less likely to continue its expansion.

After the node selction, each selected node is expanded by
sampling an unity vector d representing a random direction.
Then, the function F (α) = LD(x, x + α · d) is maximized.
There are many methods capable of tackling unidimensional
search if the objective-function is convex, unimodal and has
no discontinuity. But since there may be many local optima
with different spacing along the random direction, this function
becomes multimodal.

As pointed in [8], this can be dealt with by segmenting the
one-dimensional search space into smaller spaces, alleviating
the multimodality problem. In this algorithm, the bounds of
each segment will be defined as [P (i), P (i + 1)] taken from
the geometric progression P (i) = x+thrE∗2.0i−1, beggining
with i = 0 and P (0) = x; thrE is the radius in which two
solutions are considered redundant. The final segment will be
the last one of this progression that stays within the objective-
function bounds.

The rationale for this segmentation is that the search radius
will be smaller nearby the current node in order to improve the
already found solutions and it will be larger farther away from
the node, allowing the exploration of the search space. The
unidimensional optimization approach used here is the Brent
method [14].

After the optimization of each segment, some decisions are
performed to whether to replace the current node or to connect
it to the new solution. Given an optimal α of one segment, we
define x∗ = x+α · d and xm = 0.5 · (x− x∗), also, y, y∗, ym
will refer to the objective-function values of the corresponding
points.

2The source-code is available at https://github.com/folivetti/LINKEDOPT



If ym > y, y∗ or y∗ > y, ym, then x cannot possibly be a
global maximum and then its corresponding node is replaced
by xm or x∗ accordingly. If ym < y, y∗, then it is assumed
that xm is a local minima, and x and x∗ are located at the
basis of attraction of different optima. In this situation, x and
x∗ are both kept on the population and x∗ is linked to the
closest node inside the network. This is depicted in Alg. 2.

input : network of solutions G, list of nodes to expand
nodes, initial τ0

output: network of solutions G

for x← nodes do
τ ← τ0;
while lb ≤ x+ 2 · τ · d ≤ ub do

α← argmaxα LD(x, x+ α · d), τ ≤ α ≤ 2τ ;
x∗ ← x+ α · d;
xm ← 0.5 · (x+ x∗);
if f(xm) > f(x), f(x∗) then

x← xm;
end
else if f(x∗) > f(x), f(xm) then

x← x∗;
end
else if f(xm) < f(x), f(x∗) then

InsertNode(G, x∗);
end
τ ← 2τ ;

end
end

Algorithm 2: ExpandNodes function

Finally, at the suppression step the nodes are grouped by
the distance to each other, i.e., every node with Euclidean
distance less than thrE or Line Distance less than thrL will
be grouped together. The node with the maximum objective-
function of each group is kept in the network and connected
with its nearest-neighbor afterwards. Despite its drawbacks,
the role of the Euclidean Distance at this step is to avoid the
maintanence of a high number of nodes in regions with many
local optima, thus guaranteeing to keep just one optimum per
region.

After the suppression, a local search was perform to
finetune each of the nodes. For the problems with just a
few local optima, the L-BFGS-B algorithm [15] is performed
for each representative node. The problems with many local
optima or higher dimensions (≤ 5), the CMA-ES algorithm
is performed centered by the representative point and with
variance calculated by the clustered points.

Because of the unidimensional search step and the local
search, this meta-heuristic is very costly regarding function
evaluations, but in the next section an experimental setup
will be devised in order to compare if the higher costs are
compensated by a better set of solutions.

IV. EXPERIMENTAL RESULTS

The results obtained by LinkedOpt will be assessed fol-
lowing the benchmark for multimodal optimization proposed
in [16]. This benchmark is composed of 12 functions with dif-
ferent characteristics determing a total of 20 different problems

of varying dimensions. The performance of each algorithm
is measured by means of Average Peak Rate (PR), Average
Success Rate (SR) and Function Evaluations (FES). The PR
is defined as:

PR =
1

N

N∑
i=1

NP i
NP opt

, (3)

where NP i is the number of peaks found at the i-th run,
NPopt is the total number of peaks of the studied test function
and N is the number of runs on the benchmark.

The SR is defined as:

SR =
1

N

N∑
i=1

SRi, (4)

where SRi is 1 if the algorithm found every peak on the i-th
run, and 0 otherwise.

Those measures are calculated for different accuracy levels,
i.e., how close the solution must be to the global optima to
be considered as such. For these experiments, the number of
runs (N ) is defined as 50 and the accuracy levels are set to
{1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5}.

The benchmark was propose for a competition hosted by
the IEEE Conference of Evolutionary Computation 2013. The
results will be compared with the first and second place
of this competition: Niching Evolutionary Algorithm [12]
(NEA2) and Dynamic Archive Niching Differential Evolution
Algorithm [17] (dADE1), respectively.

Since the proposed approach can be very demanding re-
garding the number of function evaluations, it will be allowed
for LinkedOpt to go past the imposed limits 3. In order to
fine tune the parameters, first the algorithm was run for a
large number of iterations, noting the total number of peaks
found. After that, the parameters were empirically adjusted so
that the number of function evaluations were minimized while
maintaining the same number of peaks per run. To minimize
the number of FES, the suppression and local search were
performed every 20 iterations.

The results reported here was those obtained after the
parameter tuning (Table I) but without restricting the number
of function evaluations. In the end, the average and standard
deviation of FES will be reported as well. The obtained results
regarding PR and SR are reported in Tables II to VI.

For the sake of simplicity, we will focus first on the
analysis of the lowest accuracy level. The first 5 problems
from the benchmark are very simple one and two-dimensional
problems, so all of the considered methods could reach a
perfect score regarding both PR and SR. The next 5 problems
creates a more challenging scenario and some of the global
optima cannot be found within the specified maximum function
evaluation. We can see that LinkedOpt can perform equally or
better than NEA2 (considering both PR and SR) but worse
than dADE1 on three of those problems.

3for this reason, this paper will not be a part of the competition



TABLE II. RESULTS OBTAINED WITH AN ACCURACY LEVEL OF 1e− 1.

Alg. F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NEA2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

dADE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Alg. F6(2D) F7(2D) F8(2D) F6(3D) F7(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.99 0.9 0.97 0.54 0.28 0.0 0.87 0.0 1.0 1.0
NEA2 0.96 0.48 0.95 0.16 0.24 0.0 0.62 0.0 1.0 1.0

dADE1 1.0 1.0 1.0 1.0 1.0 0.46 0.83 0.0 1.0 1.0

Alg. F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.67 0.0 0.96 0.0 0.67 0.0 0.67 0.0 0.75 0.0
NEA2 0.98 0.88 0.85 0.18 0.98 0.86 0.83 0.16 0.74 0.02

dADE1 0.87 0.54 0.75 0.0 0.74 0.16 0.94 0.78 1.0 1.0

Alg. F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 1.0 1.0 0.75 0.0 0.67 0.0 0.75 0.0 0.75 0.0
NEA2 0.67 0.0 0.7 0.0 0.67 0.0 0.67 0.0 0.36 0.0

dADE1 0.89 0.6 0.96 0.84 0.66 0.02 0.5 0.24 0.08 0.02

TABLE I. LIST OF PARAMETERS EMPIRICALLY SET FOR LINKEDOPT
IN ORDER TO OBTAIN THE HIGHEST NUMBER OF GLOBAL OPTIMA WITH A

MINIMUM NUMBER OF FUNCTION EVALUATIONS.

Problem Iterations Samples thrE thrL
1 10 10 0.5 0.1
2 20 10 0.01 0.001
3 10 10 0.01 0.01
4 20 10 0.1 0.1
5 20 10 0.1 0.1
6 50 30 0.1 0.1
7 50 10 0.1 0.1
8 50 10 0.1 0.1
9 50 10 0.1 0.1
10 50 10 0.1 0.1
11 50 10 0.1 0.1
12 30 10 0.1 0.1
13 30 10 0.1 0.1
14 20 10 0.5 0.1
15 20 20 0.5 0.1
16 20 10 0.1 0.1
17 20 10 0.1 0.1
18 20 50 0.1 0.1
19 20 50 0.1 0.1
20 20 20 1.0 0.1

In the next 5 problems, encompassing composition func-
tions, LinkedOpt had a worse performance than both con-
tenders. But, by further examination of the obtained solutions,
LinkedOpt had difficulties on finding the two global optima of
Weierstrass function, that contains many local optima.

But, the surprising results were obtained on the final set
of 5 problems, on higher dimensions. The results show that
LinkedOpt was unaffected by the dimension increase while
just slightly decreasing the number of optima found on the
previous set. This, though, comes with the cost of requiring
more function evaluations.

When inspecting the other level of accuracy, another draw-
back of LinkedOpt is noticed. This algorithm can roughly find
the regions containing local optima but lacking accuracy in
comparison to other approaches.

Finally, in Table VII, the average and standard deviation
of the number of function evaluations for each problem are
compared to the allowed number of evaluations for the compe-
tition. This table shows that LinkedOpt needs a higher number
of FES to find the global optima whenever the function has
many local optima. This is to be expected because the main

TABLE VII. NUMBER OF FUNCTION EVALUATIONS FOR EACH
ALGORITHM.

Function Allowed LinkedOpt
F1 (1D) 50, 000 16, 607 ± 649
F2 (1D) 50, 000 17, 889 ± 394
F3 (1D) 50, 000 7, 477 ± 412
F4 (2D) 50, 000 34, 023 ± 263
F5 (2D) 50, 000 18, 616 ± 311
F6 (2D) 200, 000 162, 199 ± 175
F7 (2D) 200, 000 411, 658 ± 179
F8 (2D) 400, 000 321, 286 ± 240
F6 (3D) 400, 000 399, 145 ± 497
F7 (3D) 200, 000 44, 248 ± 561
F9 (2D) 200, 000 394, 487 ± 6, 260

F10 (2D) 200, 000 222, 752 ± 6, 433
F11 (2D) 200, 000 610, 439 ± 38, 758
F11 (3D) 400, 000 299, 336 ± 14, 583
F12 (3D) 400, 000 587, 466 ± 54, 325
F11 (5D) 400, 000 469, 280 ± 40, 121
F12 (5D) 400, 000 603, 508 ± 45, 308
F11 (10D) 400, 000 505, 460 ± 39, 544
F12 (10D) 400, 000 394, 26 ± 39, 068
F12 (20D) 400, 000 461, 564 ± 46, 182

operator of LinkedOpt tries to enumerate all of the local optima
on a given random direction, so if a function has many local
optima it will try to explore each one of them.

To illustrate the behavior of LinkedOpt, Figs. 2 to 6 depicts
the network created after 5 iterations and after th suppression
step. Notice that for F12 (20D) it was plotted just the first two
axis. It is interesting to notice that, with just few iterations,
the solutions are already spread accross the search space and
around the local optima. This indicates that the proposed
algorithm is balanced regarding exploration and exploitation,
a feature sought by any populational meta-heuristics.

V. CONCLUSION

In this paper a new metaheuristic for multimodal opti-
mization was proposed based on the Line Distance measure
introduced on a prior work. The Line Distance is capable
of asserting whether two solutions are located at the basis
of attraction of the same optima or not. By exploiting this
property, this metaheuristic, called LinkedOpt, tried to explore
the search space by maximizing this Line Distance between a
given point and the points along a random direction.

Given enough time, this approach converges toward a



TABLE III. RESULTS OBTAINED WITH AN ACCURACY LEVEL OF 1e− 2.

Alg. F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NEA2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
dADE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Alg. F6(2D) F7(2D) F8(2D) F6(3D) F7(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.99 0.9 0.29 0.0 0.28 0.0 0.12 0.0 1.0 1.0
NEA2 0.96 0.48 0.92 0.08 0.24 0.0 0.59 0.0 1.0 1.0
dADE1 1.0 1.0 1.0 0.18 1.0 0.5 0.59 0.0 1.0 1.0

Alg. F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.67 0.0 0.75 0.0 0.67 0.0 0.67 0.0 0.75 0.0
NEA2 0.97 0.8 0.85 0.18 0.97 0.82 0.82 0.1 0.72 0.0
dADE1 0.67 0.0 0.75 0.0 0.67 0.0 0.67 0.0 0.64 0.0

Alg. F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.67 0.0 0.75 0.0 0.67 0.0 0.75 0.0 0.75 0.0
NEA2 0.67 0.0 0.7 0.0 0.67 0.0 0.67 0.0 0.36 0.0
dADE1 0.67 0.0 0.48 0.0 0.63 0.0 0.12 0.0 0.0 0.0

TABLE IV. RESULTS OBTAINED WITH AN ACCURACY LEVEL OF 1e− 3.

Alg. F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NEA2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
dADE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Alg. F6(2D) F7(2D) F8(2D) F6(3D) F7(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.99 0.9 0.25 0.0 0.28 0.0 0.12 0.0 1.0 1.0
NEA2 0.96 0.44 0.92 0.06 0.24 0.0 0.58 0.0 1.0 1.0
dADE1 1.0 1.0 0.88 0.0 1.0 0.3 0.55 0.0 1.0 1.0

Alg. F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.67 0.0 0.75 0.0 0.67 0.0 0.67 0.0 0.75 0.0
NEA2 0.97 0.8 0.84 0.18 0.96 0.76 0.81 0.08 0.72 0.0
dADE1 0.67 0.0 0.74 0.0 0.67 0.0 0.67 0.0 0.62 0.0

Alg. F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.67 0.0 0.75 0.0 0.67 0.0 0.75 0.0 0.75 0.0
NEA2 0.67 0.0 0.7 0.0 0.67 0.0 0.67 0.0 0.36 0.0
dADE1 0.67 0.0 0.42 0.0 0.63 0.0 0.08 0.0 0.0 0.0

TABLE V. RESULTS OBTAINED WITH AN ACCURACY LEVEL OF 1e− 4.

Alg. F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NEA2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

dADE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Alg. F6(2D) F7(2D) F8(2D) F6(3D) F7(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.99 0.9 0.25 0.0 0.28 0.0 0.12 0.0 1.0 1.0
NEA2 0.95 0.38 0.91 0.04 0.24 0.0 0.58 0.0 0.99 0.86

dADE1 1.0 0.78 0.81 0.0 0.96 0.16 0.44 0.0 1.0 1.0

Alg. F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.67 0.0 0.0 0.0 0.67 0.0 0.67 0.0 0.12 0.0
NEA2 0.96 0.76 0.84 0.16 0.96 0.74 0.81 0.06 0.72 0.0

dADE1 0.67 0.0 0.74 0.0 0.67 0.0 0.67 0.0 0.6 0.0

Alg. F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.67 0.0 0.0 0.0 0.67 0.0 0.5 0.0 0.31 0.0
NEA2 0.67 0.0 0.7 0.0 0.67 0.0 0.67 0.0 0.36 0.0

dADE1 0.67 0.0 0.4 0.0 0.61 0.0 0.02 0.0 0.0 0.0



TABLE VI. RESULTS OBTAINED WITH AN ACCURACY LEVEL OF 1e− 5.

Alg. F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NEA2 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.96 1.0 1.0
dADE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Alg. F6(2D) F7(2D) F8(2D) F6(3D) F7(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.0 0.0 0.25 0.0 0.28 0.0 0.12 0.0 1.0 1.0
NEA2 0.0 0.0 0.91 0.04 0.24 0.0 0.58 0.0 0.98 0.76
dADE1 0.0 0.0 0.71 0.0 0.95 0.1 0.35 0.0 1.0 1.0

Alg. F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.42 0.0 0.0 0.0 0.38 0.0 0.38 0.0 0.0 0.0
NEA2 0.96 0.76 0.83 0.14 0.95 0.7 0.8 0.06 0.71 0.0
dADE1 0.67 0.0 0.74 0.0 0.67 0.0 0.67 0.0 0.62 0.0

Alg. F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
PR SR PR SR PR SR PR SR PR SR

LinkedOpt 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.19 0.0
NEA2 0.67 0.0 0.7 0.0 0.66 0.0 0.67 0.0 0.35 0.0
dADE1 0.67 0.0 0.36 0.0 0.6 0.0 0.0 0.0 0.0 0.0

Fig. 2. Network created by LinkedOpt for Function F1 (1D) after 5 iterations.

network of local optima, where each node is a local optima
and each edge connects two nearby optima.

The performance of LinkedOpt was assessed by means
of a multimodal optimization benchmark proposed in 2013.
These experiments showed that while LinkedOpt demands a
higher number of function evaluations, it seems to consistently
explore the search space, skipping from one optima to another,
even on higher dimensions.

As for future works, there are some points that needs
further investigation:

• Use of a better data structure to express the relation-
ship between the solution taking the Euclidean and
Line Distances into account.

• Exploit such data structure in order to minimize the
number of function evaluations.

• Favor unexplored regions when sampling the distance
unity vector.

Fig. 3. Network created by LinkedOpt for Function F4 (2D) after 5 iterations.

• Improve the Line Distance maximization step in order
to avoid the need for local search.

Finally, it should be noted that the expanding node algo-
rithm can be incorporated in other multimodal optimization
algorithms as a new local search or mutation operator.
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