Computação Bio-Inspirada

Fabrício Olivetti de França

01 de fevereiro de 2020

Topics

- 1. Problema de Otimização Não-Linear
- 2. Representação
- 3. Mutação
- 4. Recombinação
- 5. Estratégias evolutivas
- 6. Restrições

Problema de Otimização Não-Linear

Problema de Otimização Não-Linear

No problema de otimização não-linear de minimização queremos:

$$minf(x)$$
 $sujeito a$
 $g_i(x) \le 0p/i \in 1, \dots, m$
 $h_j(x) = 0p/i \in 1, \dots, n$
 $x \in X$

O problema de maximização é análogo.

Representação

Representação

Para esse problema podemos utilizar duas representações: **binária** e **vetor de ponto flutuante**.

Representação Binária

Vantagens:

- Podemos utilizar todos os operadores que aprendemos nas aulas anteriores
- O espaço de busca fica reduzido a precisão utilizada na representação

Representação Binária

Desvantagens:

- Qual codificação utilizar? Conversão direta? Grey code? Ponto flutuante?
- A mudança de um bit pode ser devastador
- O cruzamento perde parte de seu significado semântico

Representação Ponto Flutuante

Representação natural da solução do problema, não exige processo de codificação-decodificação.

Apesar disso, ainda está limitado a precisão do tipo utilizado.

Precisamos pensar em operadores específicos para ela...

Mutação

Mutação Uniforme

Análogo ao bit flip podemos alterar uma determinada posição do cromossomo com probabilidade p_m por um novo valor aleatório uniforme dentro do domínio da variável.

Esse tipo de mutação pode causar um deslocamento singificativo no espaço de busca.

Mutação Gaussiana

Igual a anterior porém utilizando uma distribuição gaussiana:

- Um terço das amostras estarão na faixa de σ
- Maioria das mudanças serão pequenas, mas ainda tem chances de fazer uma mudança grande

O desvio-padrão pode ser amostrado aleatóriamente para definir o tamanho esperado da mudança.

Mutação Gaussiana

Alternativamente podemos utilizar a distribuição de Cauchy para aumentar um pouco as chances de amostrar um valor maior.

Recombinação

Recombinação de N-pontos

O uso da recombinação de n-pontos, conforme vista na representação binária, pode ser utilizada nessa representação também.

Ela tem a propriedade de manter certos blocos construtores promissores.

Porém, ela não permite a inclusão de novos valores, ao contrário da codificação binária.

Recombinação Aritmética

A recombinação aritmética consiste em, dado um conjunto de pais, calcular os novos valores com uma média ponderada.

Recombinação Aritmética Simples

Dado dois pais p_1, p_2 , sorteamos um valor $0 \le \alpha \le 1$ e um ponto de cruzamento k e fazemos:

$$f_1 = \langle p_1^1, \dots, p_1^k, \alpha \cdot p_2^{k+1} + (1-\alpha)p_1^{k+1}, \dots, \alpha \cdot p_2^n + (1-\alpha)p_1^n \rangle$$

Recombinação Aritmética Simples

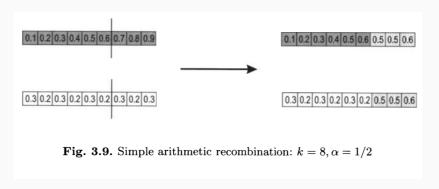


Figura 1: Fonte: Eiben, Agoston E., and James E. Smith. Introduction to evolutionary computing. Springer-Verlag Berlin Heidelberg, 2015.

Recombinação Aritmética de Um Gene

Dado dois pais p_1, p_2 , sorteamos um valor $0 \le \alpha \le 1$ e um ponto de cruzamento k e fazemos:

$$f_1 = \langle p_1^1, \dots, p_1^k, \alpha \cdot p_2^{k+1} + (1-\alpha)p_1^{k+1}, p_1^{k+2}, \dots, p_1^n \rangle$$

Recombinação Aritmética de Um Gene

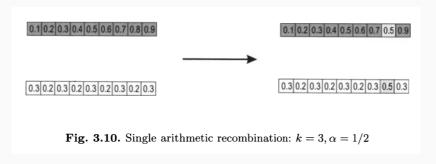


Figura 2: Fonte: Eiben, Agoston E., and James E. Smith. Introduction to evolutionary computing. Springer-Verlag Berlin Heidelberg, 2015.

Recombinação Aritmética Completa

Dado dois pais p_1, p_2 , sorteamos um valor $0 \le \alpha \le 1$ e fazemos:

$$f_1 = \alpha \cdot p_1 + (1 - \alpha) \cdot p_2$$

$$f_2 = \alpha \cdot p_2 + (1 - \alpha) \cdot p_1$$

Recombinação Aritmética Completa

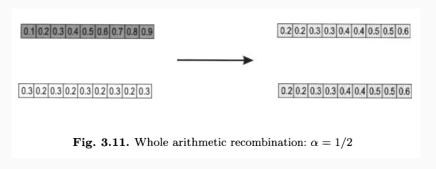


Figura 3: Fonte: Eiben, Agoston E., and James E. Smith. Introduction to evolutionary computing. Springer-Verlag Berlin Heidelberg, 2015.

O algoritmo **Estratégias Evolutivas** foi proposto nos anos 60 por Rechenberg e Schwefel introduzindo o conceito de auto-adaptação.

```
xi <- randomPoint
until (termination pop) do
  zi <- gaussianPoint(mu, sigma)
  yi <- xi + zi
  xi <- minimumBy fitness [xi, yi]</pre>
```

Geralmente utilizamos $\mu=0$ e determinamos o σ de acordo com o problema.

Chamado de tamanho do passo da mutação.

Em certo momento, propuseram um tamanho de passo adaptativo para σ com a **regra do 1/5**:

$$\sigma = \begin{cases} \sigma/c & ps > 1.5 \\ \sigma \cdot c & ps < 1.5 \\ \sigma & ps = 1.5 \end{cases}$$

ps é a taxa de sucesso da mutação e $0.817 \le c \le 1$ é uma constante de adaptação. A regra é aplicada após k gerações.

Em resumo, as Estratégias Evolutivas:

- Tipicamente utilizadas para parâmetros contínuos
- A mutação assume um papel importante
- A mutação é um ruído aleatório aplicado na solução atual
- Parâmetros da mutação são ajustados durante a execução

Em sua primeira versão utilizamos uma população com apenas um indivíduo e a mutação com um parâmetro global σ .

Nas versões com população maior do que um, podemos *incrementar* o cromossomo com as informações de parâmetros independentes para cada indivíduo.

Codificação

A codificação é composta pelo vetor de atributos concatenado com dois vetores de parâmetros:

$$\langle x_1,\dots,x_n,\sigma_1,\dots,\sigma_{n_\sigma},\alpha_1,\dots,\alpha_{n_\alpha}\rangle$$
 n_σ geralmente ou é 1 ou é n , $n_\alpha=(n-\frac{n_\sigma}{2})(n_\sigma-1)$

Codificação

É importante notar que dessa forma σ deixa de ser um argumento do usuário e passa a ser um parâmetro que também é evoluido junto da solução do problema.

Com isso, podemos dizer que o indivíduo é avaliado duas vezes: um pela qualidade da solução e outro pela capacidade em gerar bons filhos.

Mutação sem correlação σ único

Usamos a mesma distribuição para cada variável do problema:

$$\sigma' = \max(\epsilon, \sigma \cdot e^{\tau \cdot N(0,1)})$$
$$x'_i = x_i + \sigma' \cdot N_i(0,1)$$

 τ é um parâmetro do usuário, mas geralmente é setado para $\tau = 1/\sqrt{\textit{n}}.$

Atualização do σ

- Pequenas modificações devem ser mais frequentes que grandes
- Desvio-padrão deve ser maior que 0
- ullet A mediana tem que ser 1 para podermos multiplicar o σ
- Mutação deveria ser neutra, na média.

Mutação sem correlação múltiplos σ

Usamos uma distribuição diferente para cada variável do problema:

$$\sigma_i' = max(\epsilon, \sigma_i \cdot e^{\tau' \cdot N(0,1) + \tau N_i(0,1)})$$
 $x_i' = x_i + \sigma' \cdot N_i(0,1)$
 $\tau' \approx 1/\sqrt{2n}, \tau \approx 1/\sqrt{2\sqrt{N}}.$

Mutação com correlação

Ao invés de amostrarmos a perturbação de cada variável de forma independente, utilizamos uma matriz de covariância para determinar o novo valor de x:

$$\begin{aligned} \sigma_i' &= \max(\epsilon, \sigma_i \cdot e^{\tau' \cdot N(0,1) + \tau N_i(0,1)}) \\ \alpha_j' &= \alpha_j + \beta \cdot N(0,1) \\ x' &= x + \sigma' \cdot N(0,C) \\ &\quad \text{com } \beta \approx 5 \end{aligned}$$

Mutação com correlação

$$c_{ii} = \sigma_i^2$$
 $c_{ij,i\neq j} = \frac{1}{2}(\sigma_i^2 - \sigma_j^2)\tan(2\alpha_{ij})$

Mutação com correlação

Fig. 4.4. Correlated mutation: $n=2, n_{\sigma}=2, n_{\alpha}=1$. Part of a fitness landscape with a *conical shape* is shown. The *black dot* indicates an individual. Points where the offspring can be placed with a given probability form a *rotated ellipse*. The probability of generating a move in the direction of the steepest ascent (largest effect on fitness) is now larger than that for other directions

Seleção dos pais

Nas Estratégias Evolutivas, a escolha do progenitor é feita de forma completamente aleatória: toda vez que precisamos de um indivíduo pai, amostramos uniformemente da nossa população de tamanho μ .

Sobrevivência

O mecanismo de sobrevivência do ES segue uma dentre duas estratágias: (μ, σ) ou $(\mu + \sigma)$.

Ambas as estratégias utilizam o elitismo, ou seja, os melhores μ indivíduos formam a próxima população.

Sobrevivência

Na estratégia (μ, σ) os novos μ indivíduos são retirados dos σ filhos gerados.

Nessa estratégia $\sigma \geq \mu$.

São vantajosas em problemas multimodais, em que queremos evitar convergência prematura.

Sobrevivência

Na estratégia ($\mu+\sigma$) a nova população é extraída da combinação dos pais e dos filhos.

A convergência nesse caso costuma ser mais rápida.

Restrições

Restrições

Vimos nesse exemplo de programação não-linear que alguns problemas apresentam restrições.

Isso faz com que algumas soluções sejam infactíveis.

Nem sempre o ótimo global do problema sem restrição é igual ao do problema com a restrição.

Restrições e Algoritmos Evolutivos

Temos diversas formas para lidar com essa situação:

- Morte súbita
- Representação consistente
- Operador de reparo
- Penalização
- Duas populações

Morte súbita

Na morte súbita, simplesmente descartamos qualquer indivíduo que seja infactível.

Esse tipo de solução só é viável se temos uma baixa frequência de soluções infactíveis.

Representação

Podemos criar uma representação específica para o problema que não permita uma solução infactível seja representada.

Um exemplo disso é a representação de permutação para o TSP.

Essa solução geralmente exige que criemos operadores de reprodução e mutação específicos.

Reparo

Se possível, podemos criar um operador de reparo que consegue transformar todo indivíduo infactível em um indivíduo factível.

O indivíduo *reparado* pode substituir a solução infactível ou apenas ser utilizado para cálculo do fitness.

Penalização

Assumindo um problema de minimização f(x), a penalização é uma função P(x) que é adicionada a função-objetivo de tal forma que, caso x seja infactível, ela será desestimulada a permanecer na população.

A criação dessa função deve ser pensada de tal forma que uma solução que está próxima da região factível tenha alguma chance de sobreviver e soluções distantes dessa região tenham uma probabilidade baixa de sobrevivência.

Penalização

Uma forma simples para construir a função de penalização para uma restrição na forma $g(x) \le 0$ é calcular $c \cdot g(x)^2$, sendo c a constante de penalização.

Quando temos múltiplas restrições, podemos calcular uma média ponderada das penalizações.

Penalização Estática

Na penalização estática, utilizamos a mesma função de penalização durante todo o processo evolutivo.

Penalização Dinâmica

Na penalização dinâmica, a constante de penalização se torna uma função c(t) em que seu valor varia com as gerações.

Penalização Adaptativa

Finalmente, na adaptativa, a constante de penalização pode ser incorporada e auto-ajustada no processo de evolução assim como os parâmetros σ, α nas Estratégias Evolutivas.

Populações paralelas

Uma outra alternativa é a manutenção de duas populações que co-existem paralelamente: uma de indivíduos factíveis e outra de infactíveis.

Na primeira população temos o objetivo de maximizar a função de fitness do problema enquanto que na segunda, queremos minimizar o quanto as restrições foram violadas.

Sempre que uma nova solução é gerada, ela é alocada na população correspondente.