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Symbolic Regression for the Sciences



Regression Analysis

o a method that allows researchers to summarize how predictions
or average values of an outcome vary across individuals defined
by a set of predictors.

— Regression and other stories, Aki Vehtari, Andrew Gelman, and Jennifer
Hill

0 a set of statistical processes for estimating the relationships be-
tween a dependent variable ... and one or more independent vari-
ables ...

— Wikipedia




Regression Analysis

Regression:

+ Estimated relationship between a set of predictors and an outcome;

« Summarization of the expected outcome and its variation accross

individual measurements;




Regression Analysis

Regression Analysis extracts important information from data. Main tasks:

* Prediction: forecasting future data.

 Association: measuring the strength of association between
variables.

+ Extrapolation: given a limited data, extrapolate the summarization
to the whole population.

» Causal inference: how a treatment affects the outcome.




Symbolic Regression

o The problem of symbolic function identification (symbolic re-
gression) requires developing a composition of terminals and
functions that can return the correct value of the function after

seeing a finite sampling of combinations of the independent vari-

able associated with the correct value of the dependent variable.

— Genetic Programming: On the Programming of Computers by Means of
Natural Selection, John R. Koza




Symbolic Regression

o Symbolic regression (SR) is an approach to machine learning
(ML) in which both the parameters and structure of an analytical
model are optimized.

— Contemporary Symbolic Regression Methods and their Relative Perfor-

mance, William La Cava et al.

Symbolic regression (SR) is a type of regression analysis that

e searches the space of mathematical expressions to find the model
that best fits a given dataset, both in terms of accuracy and sim-
plicity.

— Wikipedia




Recommended books

Regression analysis:

* Gelman, Andrew, Jennifer Hill, and Aki Vehtari. Regression and

other stories. Cambridge University Press, 2020.

+ Harrell, Frank E. Regression modeling strategies: with applications
to linear models, logistic regression, and survival analysis. Vol. 608.
New York: springer, 2001.

* Gelman, Andrew, and Jennifer Hill. Data analysis using regression
and multilevel/hierarchical models. Cambridge university press,
2006.



Recommended books

Nonlinear models:

 Bates, Douglas. “Nonlinear regression analysis and its applications.”
Wiley Series in Probability and Statistics (1988).

» Nocedal, Jorge, and Stephen J. Wright, eds. Numerical optimization.
New York, NY: Springer New York, 1999.




Recommended books

Statistics:

* Meeker, William Q., Gerald J. Hahn, and Luis A. Escobar. Statistical
intervals: a guide for practitioners and researchers. Vol. 541. John
Wiley & Sons, 2017.




Recommended books

Symbolic Regression:

* Gabriel Kronberger, Bogdan Burlacu, Michael Kommenda, Stephan
M. Winkler, and Michael Affenzeller. Symbolic Regression. tbd.




Errors

o If you find any error in this material, please send an e-mail to
folivetti@ufabc.edu.br with the subject:

”[ERROR] - Symbolic Regression Slides”

with the corrections pointing out to the lecture and slide numbers.
I’ll update the slides as soon as possible and insert the appropriate

acknowledges in the final slide.




Once upon a data

Imagine that we are collecting data about the students from different courses.

We collect the following from each day of every course:

Course: enrolled course

Date: date in YYYY-MM-DD format
hasAttended: whether the student has
attended the class in this particular
date

Week: week of the course, starting
from 1

Sunny: whether it was sunny that day
Rainy: whether it was rainy that day
ETA: estimated time of arrival from
their origin to the university at that
date

mmRain: mm of rain

hasExam: if there is an exam that day
numAttendance: number of
attendances so far

hoursWork: estimated hours of work
outside university that day
finalGrade: the final grade (NA except
on final day)

isSingle: whether they are single
numChildren: number of children
age: person’s age

enrollmentTime: how long it has been
enrolled



Answer me!

We can use this data to extract answers from different questions:

» How many students will attend the class at an specific date?
» Will a given student attend class today?

» What is the expected final grade of a certain student?




Answer me!

A regression model will answer these questions through a function f(z; 6)
where x is called the independent variables, predictors, covarites, fea-
tures and ¢ is the model parameter.

In practice, this function is crafted in the light of a hypothesis you want to

test.




Answer me!

For example, we can create a regression model to predict the expected at-
tendance with the function:

f(x;0) = —0.5 mmRain —0.1 avgETA +40

where z = {mmRain, avgETA} and § = {40, —0.5, —0.1}.

In this model we can say that if there is no rain and the average ETA is
0 hours, we will have full attendance, on average. But, every two mm of
rain will reduce the expected attendance by 1 student. Likewise, every 1.25

hours in the ETA will reduce the attendancce in the same rate.



Answer me!

(r) Not only this model will predict the expected attendance but it
- also shows the effect that each variable has in the outcome.




How to choose a regression model?

To choose a regression model we take into consideration:

» The question we want to answer
¢ The distribution of our data

* Accuracy x Interpretability tradeoff

* Any prior knowledge we have about our data




Linear Regression

In many situation the researcher assumes linearity of the relationship and
settles with a linear model:

f(x;0) =00+ 0121+ ...+ 0qxq + €

with € being a term associated with measurement error.




Linear Regression

The values of # can be adjusted or estimated using an optimization method
with the objective of minimizing the prediction error.

To calculate the prediction error we use a set of measurements, called sam-

ples, examples or dataset, with the information about the input (z) and

(hopefully) correct output ().




Back to our example, after collecting data from the students attendance, we
will have a set of N points (z(9, y(i))fil where the superscript in paren-

thesis represents the index of the sample.

We have that 2(?) € R% and () € R, with d being the number of variables.




Loss Function

With this dataset we can now define a loss (aka, error, cost) function that
maps a choice of function f and parameters € to a value representing how
far away the model is to accurately describe the data. When adjusting the

parameters, the goal is to minimize the loss function.

One example is the Sum-of-Square Errors (SSE):

=

Cfibimy) =Y (v f(eD;0))

=1

The optimum value of 6 for a linear model f can be obtained using a closed

formula as we will see in the next lectures.



Polynomial Regression

In Polynomial Regression we add nonlinearity by fitting a polynomial of
degree k. For example, with a single input variable and k£ = 2 we have:

f(x;0) = 0g + 612 + Oz

This model describes a nonlinear function but it is still linear in the param-

eters, since we can rewritte as:

f(z;0) =6y + 0121 + 0229

with 21 = ;29 = z2.



Nonlinear regression

In some situations this may not be enough and then we have to resort to a
nonlinear model. Returning to our example, let us say that we find that a

better function for our data is:

B2

bl — o exp (03 avgETA)

+ 6o

Now, the parameter 63 is nonlinear and, thus, this function cannot be mini-
mized with the same traditional methods that we use in linear regression.



Nonlinear model

Assuming the function with the adjusted parameters is:

15
:0) = —0.5 mmRain — Bt
f(x:0) A =77 exp (—0.8avgETA) i

In the base case (mmRain = avgETA = 0) we will still have full at-
tendance. The same conclusion as before can be drawn from the mmRain

variable.




Nonlinear model

15
.8) = —0. in — 2.
f(@;6) = —0-5mmRain —g— e FTAy T 325

Now, with 2 hours of ETA we estimate 5 absences, after 4 hours it will peak
to 7 absences and remain that way for longer time of arrivals.

This happens because we are measuring the average ETAs, it may be the
case that most of the students are located close to the university and will not
have absurdly long ETAs, while these 7 students live farther away and may
think twice whether it is worth watching the lecture on a heavy traffic day.



Nonlinear models

This example model seems to have been pulled out of the hat to fit our
expectations.

In practice, finding the appropriate function is a time consuming task that

requires a lot of data analysis, preprocessing, treatment, tinkering, and think-
ing.




Common models

In the literature we can find a set of different regression models commonly

used in practice to overcome the limitations of linear regression, e.g.:

» Lasso regression * Generalized Additive Models
* Ridge regression * Gaussian regression

* ElasticNet * Neural Networks

* Polynomial regression * Regression Trees

* Quantile regression » Random Forest

XGBoost

e Generalized Linear Models




Flexibility

The main advantage of some of these models is that they use functions that
allows an increased flexibility when adjusting the parameters, making it
easier to fit the data given enough parameters:

 With a high degree, polynomial regression can fit your data almost
exactly

» With many layers and/or many neurons in each hidden layer, a

feedforward neural network can approximate any function up to an

error term as per the universal approximation theorem.



https://en.wikipedia.org/wiki/Universal_approximation_theorem

Flexibility x Interpretability tradeoff

This extra flexibility comes with the expense of interpretability. While un-
derstanding the linear models was straightforward, dealing with too many

interactions and nonlinearity hinders the readability of the model.
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Regression in Science

The regression models are widespread in different sciences such as physics,
astronomy, chemistry, among others. Such function can describe a law of
nature in such a way that we can fit it to multiple datasets of the same phe-

nomena and use the parameters to understand the peculiarities of each one

of them.
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We will see regression models in more details in lectures 2 and 3.



Symbolic Regression

Symbolic Regression can help us find a custom function that can serves as
a regression model to our data such that:

* Fits the data accurately

* Has the smallest number of parameters as possible

e e data

4 H{—— poly
—— sym reg




Symbolic Regression

The algorithm now searches for a function f(x; ) and the values of 6 that
minimizes the loss function £(f;6; x;y).

State-of-the-art: combination of Genetic Programming (lecture 5) with non-
linear optimization (lectures 11 and 12).

There are also other approaches based on enummeration, neural networks,

etc. (lecture 6).




How to use them

We currently have a large set of tools available that implements state-of-the-

art SR algorithms, we will see how to install and use some of them in lecture
7.




Visualization

Another important tool of regression analysis is the visualization of the

Partial dependence of temp, humidity, and wind speed
for the Bike rental dataset, with ITEA
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The visualization allows us to inspect and understand the model behavior.

We will see some examples in lecture 8.



Data distribution

In linear regression we assume the conditional distribution of the data is

Gaussian.
This means that the
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Data distribution

There are other distributions commonly observed in real world data that are

related to the different answers we want:

* How many students will attend the class at an specific date? Poisson
» Will a given student attend class today? Bernoulli
» What is the expected final grade of a certain student? Gaussian

We will learn how to deal with these distributions in lecture 9 and 10.




Nonlinear optimization

When dealing with nonlinear regression models and different distributions,

we must resort to nonlinear optimization methods to adjust the model pa-
rameters to the data.

We will see some well known methods in lectures 11 and 12.




Validating and Selecting the model

With the automatic search for a regression model through Symbolic Regres-

sion we may generate many different alternative models:

* Running the SR algorithm multiple times

+ Using multi-objective and returning the Pareto front
* Running different SR algorithms

* Using different settings or different splits of the data

It is important to choose among these different alternatives and validate the

choice. We will see how to do that in lectures 13 and 14.




Overparametrization

Being a populational search, Genetic Programming may favor more flexible

models (i.e., with more parameters) since they are easier to fit the data.

This can be alleviated with a stimulus to favor smaller expressions and with

the use of algebraic simplification techniques, such as Equality Saturation
(lecture 15).




Prior Knowledge

When working with data from different sciences we sometimes have a prior
knowledge of how the regression model should behave or rather we want to

enforce certain behavior:

* We observe that the output increases with the increase of a certain
variable (monotonically increasing).

* We want the output to always increase with the increase of a certain
variable.

We can integrate such knowledge into the search process enforcing that the
algorithm returns only models with the desired behavior. This will be cov-

ered in lecture 16.



Model Interpretation

As in the illustrative examples, we often want to extract additional knowl-
edge from our model. While SR models are said to be more interpretable
than black box model, they still require some supporting tools to such task,
we will cover some of them in lecture 17.




Uncertainties

Finally, one important aspect of prediction models is that a point prediction
(i.e., returning a single value as a prediction) may be useless.

In practice we want a confidence interval of the parameters and a prediction
interval. Instead of predicting that 30 students are attending the lecture

today, it is more useful if I can ensure that between 28 and 32 students are

attending or between 10 to 40 students.




Uncertainties

The high variability of the prediction may be an indication that any small
event today may cause a mass absence and, thus, I should plan ahead to
minimize the impact.

These concepts and how to calculate such intervals with SR will be covered
in lectures 18 and 19.




Course evaluation criteria

See the website:

https://folivetti.github.io/teaching/2024-summer-teaching-2



https://folivetti.github.io/teaching/2024-summer-teaching-2

Bonus points!

Bonus points if a majority (80%) of the students answer the anonymous

form:

https://forms.gle/xaHtCLAEGN9906G36



https://forms.gle/xaHtCL4EGN99o6G36

Terminology learned today

* regression: relationship between predictors and outcome

+ independent variables, predictors, covariates, features: x
 model parameters: ¢

» outcome, dependent variable, target: y

» samples, examples, dataset: (x(i),y(i))f\il

* j-th variable of the i-th example: m§~i)

* loss, error, cost function: £(f;60;x;y)




Further reading

Chapter 1 of:

* Gelman, Andrew, Jennifer Hill, and Aki Vehtari. Regression and

other stories. Cambridge University Press, 2020.

 Harrell, Frank E. Regression modeling strategies: with applications

to linear models, logistic regression, and survival analysis. Vol. 608.

New York: springer, 2001.




Next lecture

* Introduction to Regression Analysis
* Basic concepts of data collection and treatment

* Basic concepts of statistics
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