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Basic Concepts



Random Variable

A random variable is neither random nor a variable.
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Random Variable

A random variable is a function X : Ω → E where Ω is called the sample
space and E is the set of possible outcomes.
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Random Variable

For example, Ω can be the set of students at this graudate program and E is
the age.

This function is used to extract properties of interest of random experiments.
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Statistical Quantities

Let us pick a student at random, the random variable can be used to quantify
this student somehow.

Following our example, we convert this student to its age.
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Statistical Quantities

Applying this function to our population of students, we can obtain some
information about them (e.g., how young is the youngest student?).

Sometimes is not possible to obtain data from the entire population, in those
cases we can pick a sample and extrapolate from them.

With our quantified data, we can summarize our values applying an aggre-
gation function called statistical quantitties.
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Statistical Quantities

Some examples of statistical Quantities are:

• Mean
• Median
• Mode
• Variance
• Standard Deviation
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Statistical Quantities

The measure can be of central tendency that returns the central point of
your samples or of spread, showing the variation of your samples.
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Measures of Central Tendency



Mean

Themean is given by:

X̄ = 1
N

N∑
i=1

Xi

whereN is the number of samples andXi is the i-th sample. If we calculate
the mean of the population we use the symbol µ.
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Median

The median is the middle value when the list of samples is ordered. If the
number of samples is even, we average the two middle values.

Median([1, 2, 3, 4, 5]) = 3
Median([1, 2, 3, 4, 5, 6]) = (3 + 4)/2 = 3.5
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Mode

Themode is the most frequent value in the list of samples. If there are more
than one most frequent value, the data ismultimodal.

Mode([1, 1, 1, 2, 2, 3]) = 1
Mode([1, 1, 1, 2, 2, 3, 3, 3]) = [1, 3]
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Measures of spread



Range

The range is the difference between the maximum and minimum values:

Range(X) = max(X) = min(X)
Range([1, 2, 3, 4, 5, 6]) = 6 − 1 = 5
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Variance

The variance is the average squared distance between each sample and the
central value:

s2 = 1
N − 1

N∑
i=1

(
Xi − X̄

)2

s2([1, 2, 3, 4, 5, 6]) = 3.5

If we are calculating the variance for the entire population, we divide by N

and use the symbol σ2.
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Variance (N − 1)

Why do we divide by N − 1 instead of N?

• We are estimating these quantities from a sample
• X̄ is an estimation of µ

• If we pick many different samples and average the sample means:

Mean(X̄) = µ
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Variance (N − 1)

If we call σ2
s the variance of the sample (i.e., assume the sample is the pop-

ulation), we can pick many samples and average these variances:

σ2
s = 1

N

N∑
i=1

(
Xi − X̄

)2

= 1
N

N∑
i=1

(
(Xi − µ) − (X̄ − µ)

)2

= 1
N

N∑
i=1

(Xi − µ)2 − 2(X̄ − µ)
N

N∑
i=1

Xi − µ + (X̄ − µ)2

N
N
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Variance (N − 1)

X̄ − µ = 1
N

N∑
i=1

Xi − µ

= 1
N

N∑
i=1

(Xi − µ)

n(X̄ − µ) =
N∑

i=1
Xi − µ
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Variance (N − 1)

σ2
s = 1

N

N∑
i=1

(Xi − µ)2 − 2(X̄ − µ)2 + (X̄ − µ)2

= 1
N

N∑
i=1

(Xi − µ)2 − (X̄ − µ)2

16



Variance (N − 1)

Com isso:

Mean(σ2
s) = Mean( 1

N

N∑
i=1

(Xi − µ)2) − Mean((X̄ − µ)2)

= σ2 − 1
n

σ2

= n − 1
n

σ2
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Variance (N − 1)

So, dividing by N − 1 is a correction of our values to not understimate the
estimation of the population variance.
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Degrees of Freedom

This is linked to the concept of degrees of freedom (ν) and it is defined as
the number of independent observations (N ) minus the number of parame-
ters used in the calculation.

So, for sample variance we have N observations and we use one parameter
(the sample mean), leading to ν = N − 1.

19



Standard Deviation

The sample standard deviation (s) or populational standard deviation (σ)
is given by

s =

√√√√ 1
N − 1

N∑
i=1

(
Xi − X̄

)2
σ =

√√√√ 1
N

N∑
i=1

(Xi − µ)2

This measure of spread brings the variance to the same unit of our samples
(instead of the square of differences).
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Interquantile Range

The interquantile range is calculated as the difference between 75th and
25th percentiles of the sample.

The kth percentile is the value in which k% of the data falls below it.

The median is the 50th percentile as 50% of the data is below that value.
To calculate the 25th and 75th percentiles we just calculate the median of
the subset of the data below and above the median.

IQR([1, 1, 2, 4, 5, 6, 7]) = Median([5, 6, 7]) − Median([1, 1, 2])
= 6 − 1 = 5
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Why do we need all of them?

The difference between mean, median, mode becomes clear depending on
how our values are distributed.
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Data Distribution

Let us say we have a dice and our random variable X maps the face of the
dice to its corresponding number.

The results of throwing a dice depends on many variables. The current
position of the dice, the applied force, angle, etc.
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Data Distribution

In a perfect world, we could measure every variable and make an exact
prediction of the result!

Imagining this perfect world, what would happen if we throw the dice in
every possible start condition and counted the frequency of every outcome?
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Data Distribution

We expect to see something like this:

1 2 3 4 5 6
0

20

40

60

80

100

The number of times we observe each value of the dice is constant.
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Data Distribution

In relative frequency, we can say that each value happens 1/6 of the time.

The frequencies are uniformly distributed among each possible value.
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Data Distribution

The statistical quantities of the population of a dice throw are:

X̄ = 3.5
Median = 3.5

Mode = [1, 2, 3, 4, 5, 6]

Notice how the mean and the median are the same! Since every value has
the same frequency, the mode contains every value.
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Data Distribution

Bartoš, František, et al. ”Fair coins tend to land on the same
side they started: Evidence from 350,757 Flips.” arXiv preprint
arXiv:2310.04153 (2023).
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Data Distribution

Let us change our random variable to the sum of the values of the faces of
two dice. This is what happens:

2 3 4 5 6 7 8 9 10 11 12
0

5 · 10−2

0.1

0.15

0.2

Since there are more ways to form a 7 it is much more frequent thaan 2.
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Data Distribution

The statistical quantities of the population of two dice throw are:

X̄ = 7
Median = 7

Mode = 7

In this distribution, all the central measures coincide.
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Data Distribution - Symmetrical
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Symmetrical Distribution with Mean, Median, and Mode
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Data Distribution - Skewed / Asymmetrical
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Skewed Distribution with Mean, Median, and Mode
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Data Distribution

From these plots we can see that:

• Themean is the point closest on average to every point in your
sample. It is affected by unusually small or large values (outliers).
Should we count the salary of a CEO to estimate the mean wage?
Should we consider a student that never attended any class?

• Themedian says that 50% of the values are smaller or larger than
that. A median wage will aleviate the influence of the CEO salary.

• Themode describes the most frequent values. What is the most
frequent attendance count?
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Data Distribution

Understanding how the data is distributed provides us with richer informa-
tion.

A probability distribution is a function that maps events to their corre-
sponding probabilities.
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Data Distribution

The distribution of a fair coin is described by:

P (H) = 0.5
P (T ) = 0.5
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Data Distribution

The probability function P is the probability that a certain event occurs.

The cumulative distribution function cdf is the probability that a random
variable X assumes a value less than or equal to x.
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Data Distribution

The probability distribution can be discrete or continuous.

• Discrete distribution: when the set of events is finite or countable
infinitely.

• Continuous distribution: when the set of evets is uncountable.
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Data Distribution

If the event is discrete we describe the distribution with a probability mass
function (pmf) f(x) such that:

∑
x

f(x) = 1
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Data Distribution

If the event is discrete we describe the continuous with a probability den-
sity function (pdf) that describes the probability of a range of values a ≤
x ≤ b:

P (a ≤ x ≤ b) =
∫ b

a
f(x)dx
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Data Distribution

The integral of a range [a, b] is the area of the function between those two
points:

P (a ≤ x ≤ b) =
∫ b

a
f(x)dx

a b
x
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Parametrization

If the pmf or pdf depends on additional parameters, we will write f(x |
µ, σ) as the value of the function is conditioned by the values of these pa-
rameters.

Another common notation is f(x; µ, σ).
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Expected Value

The expected value or expectation is the weighted sum of each possible
event by their corresponding probability:

E[f(x)] =
∑

x

xf(x)

E[f(x)] =
∫ ∞

−∞
xf(x)dx

This is equivalent to the population mean (µ).

42



Moments

The n-thmoment of a distribution for n > 1 is:

E[(x − µ)n]

The first moment n = 1 is the expected value (mean, E[x]), the second
moment n = 2 is the variance (V ar[x]), the third moment n = 3 is a

measure of skewness.
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Discrete Distributions



Bernoulli

f(x | p) =

p if x = 1

1 − p if x = 0

f(x | p) = px(1 − p)x

f(x | p) = px + (1 − p)(1 − x)

• Support: x ∈ 0, 1
• Answers a yes/no question
• Probability that some experiment is successful (x = 1)
• Will a student attend class today?
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Bernoulli

E[f(x | p)] = p

V ar[f(x | p)] = p(1 − p)
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Bernoulli

p = 0.5

Figure 1: https://distribution-explorer.github.io/discrete/bernoulli.html
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Binomial

f(x | n, p) =
(

n

x

)
px(1 − p)n−x

• Support: x ∈ Z, x ≤ n.
• How many success in a sequence of n independent trials with a
probability of success p

• If I pick n students at random, how may will have attended class
today?

47



Binomial

E[f(x | n, p)] = np

V ar[f(x | n, p)] = np(1 − p)
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Binomial

n = 20, p = 0.5

Figure 2: https://distribution-explorer.github.io/discrete/binomial.html
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Binomial

fBernoulli(x | p) = fBinomial(x | 1, p)
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Poisson

f(x | λ) = λxe−λ

x!

• Support: x ∈ Z, x ≥ 0.
• How many events will happen at a time frame if the rate of
occurrence is λ?

• How many students will raise hands and ask questions within one
hour?

• Assumes events are independent
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Poisson

E[f(x | λ)] = λ

V ar[f(x | λ)] = λ
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Poisson

λ = 5

Figure 3: https://distribution-explorer.github.io/discrete/poisson.html
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Multinomial

f(x1, x2, . . . , xn | p1, p2, . . . , pn, N) = N !
x1!x2! . . . xn!

px1
1 px2

2 . . . pxn
n

• Support: x ∈ Nn.
• What is the probability of having a sequence of n outcomes given a
different probability for each outcome

•
∑

p p = 1
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Multinomial

E[f(xi | pi, N)] = Npi

V ar[f(xi | pi, N)] = Npi(1 − pi)

https://distribution-explorer.github.io/multivariate_discrete/multinomial.html
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Continuous Distributions



Gaussian

f(x | µ, σ) = 1
σ

√
2π

e− 1
2 ( x−µ

σ )2

• Support: x ∈ R.
• Symmetrical distribution, a central value is very likely and the
neighbor valules are more rare

• Central limit theorem: average of many samples converge to
Gaussian

• Also known as normal distribution
• The height of the students is likely normally distributed
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Gaussian

E[f(x | µ, σ)] = µ

V ar[f(x | µ, σ)] = σ2
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Gaussian

µ = 0, σ = 0.2

Figure 4: https://distribution-explorer.github.io/continuous/normal.html
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Gamma

f(x | α, β) = xα−1e−βxβα

Γ(α)
Γ(α) = (α − 1)!

• Support: x ∈ R, x ≥ 0.
• If events happen at the same rate (β), what is the probability of α

events to happen.
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Gamma

E[f(x | α, β)] = α

β

V ar[f(x | α, β)] = α

β2

60



Gamma

α = β = 2

Figure 5: https://distribution-explorer.github.io/continuous/gamma.html
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Pareto

f(x | xmin, α) = α

x

(
xmin

x

)α

• Support: x ∈ R, x ≥ xmin.
• Low magnitude earthquakes are much more likely than high
magnitude

• Long-tailed distributn
• The inverse of the Pareto distribution is the Power distribution
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Pareto

E[f(x | xmin, α)] =

∞ α ≤ 1
αxmin
α−1 α > 1

V ar[f(x | xmin, α)] =

∞ α ≤ 2
αx2

min
(α−1)2(α−2) α > 2
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Pareto

xmin = 0.1, α = 2

Figure 6: https://distribution-explorer.github.io/continuous/pareto.html

64



Generating our example data



Student attendance

Let us build an artificial data set of student attendance. We want to simulate
the variables mentioned in the first lecture.
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Initial Setup

1 # All courses have 12 weeks,2 days a week
2 # To simplify,we will assume months with 28 days
3 # and will disconsider weekends
4 days = range(1, 29)
5 # Each term lasts three months and these
6 # months are always fixed
7 terms = [[2,3,4], [6,7,8], [10,11,12]]
8 years = [2021, 2022, 2023]
9
10 numStudents = 300
11 courses = 200
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Weather information

1 # estimated from SP averages taken
2 # from https://www.climatestotravel.com/climate/brazil
3 # sunny,rainy,cloudy
4 weather = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
5
6 # Probability of raining is the avg. number
7 # of rainy days for each month divided by 30 days
8 rainProb = { (k+1):(v/30) for k, v in
9 enumerate([18,16,13,9,9,6,7,7,9,11,13,16])}
10 # sunny and cloudy probabilities are 80% and 20%
11 # of the remaining probability of rain
12 sunProb = {k:(1 - v)*0.8 for k, v in rainProb.items()}
13 cloudProb = {k:(1 - v)*0.2 for k, v in rainProb.items()}
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Weather information

1 # avg. and std. of mm of rain,
2 qtyRain = {(k+1):(v/60) for k, v in
3 enumerate([240, 215, 160, 75, 75, 55, 45,
4 40, 80, 125, 145, 200])}
5 rateRain = {(k+1):v for k, v in
6 enumerate([7, 7, 6, 4, 4, 3, 3, 3, 4, 5,
7 5, 5])}
8
9 mmRain = rng.gamma(qtyRain[month], rateRain)
10 if isRainy else 0

• The quantity of rain per timeframe (α) and rate of rain (β).
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User information

1 def getChildren(age):
2 return np.round(rng.power(np.log(age)-3,1)*5)[0]
3
4 def getEnroll(age):
5 return rng.poisson(age - 23)

• The number of children is the inverse of a Pareto distribution, a
smaller value is more frequent

• The amount of time the student is enrolled is a poisson process. The
distribution is centered at 0 for 23 years older
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User information

1 def hasWork(age):
2 p = 1 / (1 + np.exp(-0.2*(age-25)))
3 return rng.binomial(1, p)
4
5 def single(age):
6 p = 1 / (1 + np.exp(-0.15*(age-25)))
7 return rng.binomial(1, 1 - p)
8
9 ages = rng.poisson(4, numStudents) + 25

• hasWork and single follows a binomial distribution dependent of
age (more on logistic function in the next lecture)

• age also follow a Poisson distribution with the central value at 29.
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User-Date-Course relationship

1 def sampleSpeed(dayInfo, studentInfo):
2 mu = 40 + 5*dayInfo.isSunny - 5*dayInfo.isRainy
3 - np.exp(0.2*dayInfo.mmRain)
4 + 5*studentInfo.isSingle
5 - 2*studentInfo.numChildren
6 - 2*studentInfo.isSingle*studentInfo.numChildren
7 return np.max([10, rng.normal(mu, 5)])
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User-Date-Course relationship

1 def sampleAttend(dayInfo, studentInfo, ETA, hours, exam):
2 y = (16.1 + 11.5*exam - 1.3*np.exp(0.4*hours)
3 - 1.1*np.exp(0.3*ETA)
4 - 3.2*studentInfo.numChildren)
5 /(1 + 15.2*dayInfo.mmRain
6 + 21.3*studentInfo.numChildren*dayInfo.isRainy)
7 return rng.binomial(1, 1/(1 + np.exp(-y)))
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User-Date-Course relationship

1 def sampleGrade(row):
2 y = 1.2*np.exp(-0.2*row.hoursWork_mean)
3 - 3.2*np.log(1.5 + row.ETA_mean)
4 + 3.2*np.log(1.2+row.numAttendence_max)
5 - 1.1 * row.numChildren * (1 - row.isSingle)
6 / (1.5 + 0.5*np.exp(0.9*row.age - 30))
7 return np.round(np.clip(rng.normal(y, 0.5),0,10), 2)
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Data generation

The whole script is available in Jupyter Notebook format at
https://folivetti.github.io/courses/RegSimbolica/2024/EDA.ipynb.
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Symbolic Models

• The symbolic models defined in the previous slides describe the
parameters of each distribution.

• Our goal is to retrieve these expressions from a sampled data.
• The regression goal is to estimate a distribution parameter that fits
the sampled data!!
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Terminology learned today

• random variable: a function that maps one sample to a numerical
quantity

• population: the entire data
• sample: a subset of the data
• statistical quantity: an aggregation function that summarizes the
data

• probability distribution: maps events to probabilities
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Terminology learned today (and more)

• probability mass function (pmf): probability of a discret event
• probability density function (pdf): probability of a event being
between a range

• cumulative distribution function (cdf): probability that an event is
less than or equal a value

• quantile function: the inverse of cdf, given a probability p what
event will return cdf(x) = p?

• expected value: the center of the mass.
• moment: quantitative measure of the shape of the function.
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Further reading

(click to follow the links):

• https://distribution-explorer.github.io/background/review_of_key_
concepts.html

• https://en.wikipedia.org/wiki/Random_variable#Examples
• https://en.wikipedia.org/wiki/Sampling_(statistics)
• https://en.wikipedia.org/wiki/Statistic
• http://www.leahhoward.com/m163text/6-4.pdf
• https://web.stanford.edu/~peastman/statmech/interpretation.html
• Blitzstein, Joseph K., and Jessica Hwang. Introduction to probability.
Crc Press, 2019.

• Bishop, C. “Pattern recognition and machine learning.” Springer
google schola 2 (2006): 35-42.
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Next lecture

• Introduction to Regression Analysis

• Confidence Intervals
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