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Symbolic Regression



Let’s keep things linear

Let us frame the linear regression a little bit differently:

f(x; β) = βϕ(x)

Now, ϕ(x) ∈ Rd → Rd′
is a function that transforms the original variable

space to a different space.
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Let’s keep things linear

In our previous lectures we have used ϕ(x) = [1; x] effectively adding a
column of 1s in our dataset.

But we are not limited to this simple transformation.
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Let’s keep things linear

For example, we can have:

ϕ(x) = [1; x]
ϕ(x) = [1; x; x2]
ϕ(x) = [1; x;

√
x]

ϕ(x) = [1; x; log x; x2]
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Let’s keep things linear

This will add some nonlinearity to our model without losing the benefit of
fitting a linear model.

0 10 20 30 40 50
0

50

100

150 2x + 4
−0.03x2 + 2x + 4

2
√

x3 + 2x + 4
2x + 3 ln x + 4

4



Let’s keep things linear

With this transformation, we now have a hypothesis space composed of all
possible transformations:

Fϕ =
{

f(ϕ(x); β) = βϕ(x) | β ∈ Rd
}

F =
{

f(ϕ(x); β) = βϕ(x) | ϕ ∈ Φ, β ∈ Rd
ϕ

}
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Let’s keep things linear

In the previous example, we were working with one-dimensional predictor.
If we have multidimensional x, we can apply the transformations to each
one of the predictors or to a subset.

ϕ(x) = [1; x]
ϕ(x) = [1; x; x2

1]
ϕ(x) = [1; x;

√
x1; x2

2]

Notice that a transformation applied to every predictor will add another d

predictors.
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Interactions

When making quadratic, cubic, and other polynomial transformations, we
often consider the interaction between variables. So, for d = 2:

ϕ(x) = [1; x; x2]
= [1; x; x2

1; x2
2; x1x2]

Notice that by doing so we will have an additional O(d2) predictors for
quadratic predictors and O(d3) additional predictors for cubic, etc.
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Interactions

If we have the interation between two predictors x1, x2 modeled as:

f(x; θ) = β1 + β2x1 + β3x2 + β4x1x2

The effect of x1 for a fixed value of x2 would be β2 + β4x2.
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Interactions

The interaction compensates for the influence that one predictor may have
for another.

For example, the effect of a treatment to a person may depend of the age of
the person
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Let’s keep things linear

Another feature transformation is the piecewise predictors. These are bi-
nary predictors that has a value of 1 if xi is between a certain range, and 0
otherwise.

ϕ(x) = [1[l1 < x ≤ u1]; 1[l2 < x ≤ u3], . . . , 1[li < x ≤ ui]]
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Piecewise Predictors
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Let’s try some transformations

1 df = pd.read_csv("grade.csv")
2 xcols = ['ETA_mean', 'hoursWork_mean',
3 'numAttendence_max', 'age', 'numChildren',
4 'enrollmentTime', 'isSingle']
5
6 x, y = df[xcols].values, df.grade.values
7 x = np.concatenate((np.ones((x.shape[0],1)),x),
8 axis=1)
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Let’s try some transformations

1 _,axs = plt.subplots(3,3, figsize=(10,16), sharey=True)
2 ix = 0
3 for i in range(2):
4 for j in range(3):
5 axs[i,j].plot(df[xcols[ix]].values, df.grade.values,
6 '.', color='black')
7 axs[i,j].set_xlabel(xcols[ix])
8 if j==0:
9 axs[i,j].set_ylabel('grade')
10 ix = ix+1
11 axs[2,0].plot(df[xcols[ix]].values, df.grade.values, '.',
12 color='black')
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Let’s try some transformations
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Let’s try some transformations

{.python frame=lines framerule=2pt linenos=true
fontsize=\footnotesize

baselinestretch=0.8}t.subplots(3,3,
figsize=(14,14), sharey=True) ix = 0 for i, c1 in

enumerate(xcols[:3]): for j, c2 in
enumerate(xcols[3:6]):

axs[i,j].plot(df[c1].values*df[c2].values,
df.grade.values, '.', color='black')

axs[i,j].set_xlabel(f"{c1}*{c2}")
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Let’s try some transformations

16



Let’s try some transformations

1 _,axs = plt.subplots(3,4,
2 figsize=(14,14), sharey=True)
3 ix = 0
4 for i, c1 in enumerate(xcols[:3]):
5 for j, (fname,h) in enumerate([('sqrt',np.sqrt),
6 ('cbrt', np.cbrt), ('log1p', np.log1p),
7 ('exp', lambda x: np.exp(-x))]):
8 axs[i,j].plot(h(df[c1].values), df.grade.values,
9 '.', color='black')
10 axs[i,j].set_xlabel(f"{fname}({c1})")
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Let’s try some transformations
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Neural Networks

Neural Networks, specifically feed-forward networks1, creates a regression
model as a chaining of nonlinear functions (called activation) applied to the
predictors.

f(x; θ) = θ13 tanh(θ5 tanh(θ1x1 + θ2x2) + θ6 tan(θ3x1 + θ4x2))
+ θ14 tanh(θ11 tanh(θ7x1 + θ8x2) + θ12 tan(θ9x1 + θ10x2))

1Bebis, George, and Michael Georgiopoulos. “Feed-forward neural networks.” Ieee
Potentials 13.4 (1994): 27-31.
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Neural Networks

The tanh function has the following shape:
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Neural Networks

If we add a chain of overparameterized tanh, like the previous example, we
can shape the function to fit our data:
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Neural Networks

This overparameterization reduces the Interpretability capabilities of our
model. The effect of any of our predictors is unclear.
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Gradient Boosting

Another regression model with high accuracy for nonlinear relationship is
the gradient boosting2. The main idea is to iteratively train weak models
with a modified objective-function at every iteration.

This modified objective-function tries to minimize the current prediction
error.

2Friedman, Jerome H. “Greedy function approximation: a gradient boosting machine.”
Annals of statistics (2001): 1189-1232.

23



Gradient Boosting

This technique starts with a baseline model (F_0 = E [y]) and iteratively
creates a new model based on the previous:

F0(x) = argmin
c

L(y; c)

Fm(x) = Fm−1(x) + argmin
hm∈H

L(y; Fm−1(x) + hm(x))(x)
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Gradient Boosting

Since findinghm that minimizes the objective is infeasible. Insteadwe spec-
ify a base weak learner (i.e., regression tree, linear model) and minimizes
the gradient of the current loss function:

Fm(x) = Fm−1(x) − γ∇L(y; Fm−1(x))

25



Gradient Boosting

Similar to Neural Networks, Gradient Boosting sacrifices the interpretabil-
ity to achieve a better accuracy.

Even though there are some techniques that can measure the feature im-
portance for these models, the interpretation is not as straightforward as a
linear model (or even a hand-crafted nonlinear model).

These are often called opaque model (as oposed to a transparent model).
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Transparent x Opaque models

Depending on what we want, we have transparent and opaque models:

• It is possible to inspect the decision process and the behavior of
transparent models

• In opaque models, this is obscured and external tools are needed to
understand its behavior

?Xi yi
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All about prediction

Opaque models (Deep Learning, SVM, Kernel Regression):

• Often associated with a higher predictive power (but not always true).
• If our only concern is prediction, they may be enough.
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Transparent x Opaque models

If the objective is to study
associations, an opaque model may
create a barrier to understand the
strength of association of a
predictor to the outcome.
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Symbolic Regression

Symbolic Regression searches for a function form together with the numer-
ical coefficients that best fits the outcome.

f(x, θ) = θ0x0 + ex0x1
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Symbolic Regression

• Genetic Programming is the most common algorithm to search for
the expression

• Represents the solution as an expression tree.

f(x, θ) = θ0x0 + ex0x1

+

∗

θ0 x0

exp

∗

x0 x1
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Genetic Programming

A very simple search meta-heuristic:

1 gp gens nPop =
2 p = initialPopulation nPop
3 until (convergence p)
4 parents = select p
5 children = recombine parents
6 children' = perturb children
7 p = reproduce p children'
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Symbolic Regression

Two NP-Hard problems3:

• Search for the correct function form f(x, θ).
• Find the optimal coefficients θ∗.

3Virgolin, Marco, and Solon P. Pissis. “Symbolic Regression is NP-hard.” arXiv preprint
arXiv:2207.01018 (2022).
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Symbolic Regression - GP

If we fail into one of them we may discard promising solutions.
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Figure 1: The function cos(θ1x + θ2) may behave differently depending on the
choice of θ.
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Symbolic Regression - GP

Pros:

• It can find the generating function of the studied phenomena.
• Automatically search for interactions, non-linearity and feature
selection.

Cons:

• It can find an obscure function that also fits the studied phenomena.
• The search space can be difficult to navigate.
• Not gradient-based search, it can be slower than opaque models.
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Is it worth it?

As we can define the primitives, we
can choose how expressive the
model will be.
Consider the sin (x) function. GP
can find the correct model if it
contains this function in its
primitives.
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Is it worth it?

3 layers neural network with
sigmoid activation trained on the
interval x ∈ [−10, 10], took 300
seconds and returned this model:

TIR Symbolic Regression model,
took 10 seconds and returned this
model:
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Current State of SR



Is SR competitive?

Benchmark4 of 22 regression algorithms using 122 benchmark problems,
15 of them are SR algorithms.
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4La Cava, William, et al. “Contemporary Symbolic Regression Methods and their
Relative Performance.” Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1). 2021.
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Different approaches

• Many different ideas to improve current results.
• Using nonlinear least squares or ordinary least squares to find θ.
• Constraining the representation.
• Using information theory to improve recombination and perturbation.
• Incorporating multi-objective, diversity control, etc.
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Operon C++

Operon C++5 is a C++ implementation of standard GP and GP with nonlin-
ear least squares for coefficient optimization.

+

w0 + a · log((w1X1/w2X2) + w3)

w0 ·

a log(·)

+

/ w3

·

w1 X1

·

w2 X2

• Competitive runtime, good
accuracy

• Supports multi-objective
optimization, many
hyper-parameters to adjust to
your liking

• May overparameterize the
model

5Burlacu, Bogdan, Gabriel Kronberger, and Michael Kommenda. “Operon C++ an
efficient genetic programming framework for symbolic regression.” Proceedings of the
2020 Genetic and Evolutionary Computation Conference Companion. 2020.
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Transformation-Interaction-Rational

Constraint the generated expressions to the form6:

fT IR(x, wp, wq) = g

 p(x, wp)

1 + q(x, wq)


invertible function

IT expressions

fIT (x, w) = w0 +
m∑

j=1
wj · ( fj ◦ rj )(x)

linear coefficient

transformation function interaction function

rj(x) =
d∏

i=1
x

kij

i

strength of interaction
6Fabrício Olivetti de França. 2022. Transformation-interaction-rational representation for
symbolic regression. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’22). Association for Computing Machinery, New York, NY, USA,
920–928. https://doi.org/10.1145/3512290.3528695 41



What else?



More benefits to SR

• As a middle ground between opaque and clear model, it can be
interpreted

• We can make sure it conforms to our prior-knowledge
• Standard statistical tools can also be applied
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Interpreting SR models

Partial effect at the mean7 or the mean of the partial effects.

7Aldeia, Guilherme Seidyo Imai, and Fabrício Olivetti de França. “Interpretability in
symbolic regression: a benchmark of explanatory methods using the Feynman data set.”
Genetic Programming and Evolvable Machines (2022): 1-41.
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Dataset: Video Game Sales

Or a PDP plot8 if you want to.

8Friedman, Jerome H. “Greedy function approximation: a gradient boosting machine.”
Annals of statistics (2001): 1189-1232.
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Dataset: Video Game Sales - Debug it!

0.4593106521142636
+ 0.08 log(1 + publisher3gen−3)
− 0.09 log(1 + critic_score2user_score3gen3PC3)
+ 0.21 log(1 + user_count3gen−3)
− 1.77 log(1 + gen)
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Shape-constraint9

9Kronberger, Gabriel, et al. “Shape-Constrained Symbolic Regression—Improving
Extrapolation with Prior Knowledge.” Evolutionary Computation 30.1 (2022): 75-98.
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Statistical Analysis

Unlike some opaque models, we can calculate the confidence interval of
our parameters and predictions using standard statistical tools:

SSR 752.76 s^2 28.95
theta Estimate Std. Error. Lower Upper
0 -1.43e+01 4.29e+00 -2.31e+01 -5.44e+00
1 1.28e+01 2.49e+00 7.67e+00 1.79e+01

Corr. Matrix
[ 1. -0.97]
[-0.97 1. ]
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Prediction intervals:
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And many more!
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Let’s test it!

1 x = np.repeat(np.arange(-5, 5, 0.2), 15)
2 y = rng.normal( 0.3*x**3 - 0.2*x**2 + 0.1*x + 1, 1)
3 plt.plot(x, y, '.')
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Let’s test it!
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Baseline

1 from sklearn.linear_model import LinearRegression
2
3 lin = LinearRegression()
4 lin.fit(x.reshape(-1,1), y)
5 print("LR: ", lin.score(x.reshape(-1,1), y))
6 print(f"{lin.coef_}*x")
7
8 xpoly = np.vstack([x, x**2, x**3]).T
9 lin.fit(xpoly,y)
10 print("Poly: ", lin.score(xpoly, y))
11 print(f"{lin.coef_}")
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Baseline

LR: 0.8270
Poly: 0.9954
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Operon

1 from pyoperon.sklearn import SymbolicRegressor
2 import sympy as sym
3
4 reg = SymbolicRegressor()
5 reg.fit(x.reshape(-1,1),y)
6 res = [s['objective_values'], s['tree']))
7 for s in reg.pareto_front_]
8
9 for obj, expr, mdl in res:
10 print("Score: ", obj)
11 print("Expr: ", reg.get_model_string(expr, 3))
12 print("Simplified: ",
13 sym.sympify(reg.get_model_string(expr, 3)))

54



Operon

Score: [-0.995512068271637]
Expr: (1.064 + ((-0.934) * ((((0.106 * X1)

* ((-0.008) * X1)) * (((-0.908)
/ (((1.019 * X1) - 0.168)
* (((1.019 * X1) - 0.168) * ((1.019 * X1) - 0.168))))
- (((1.456 * X1) - ((((1.414 * X1) - 0.486)
* (0.106 * X1)) * ((-1.207) + (0.106 * X1))))
/ (((-0.390) + (0.232 * X1)) * ((0.232 * X1) + 0.286)))))
+ (((((1.414 * X1) * ((-2.135) * X1)) + ((-1.207)
+ (0.106 * X1))) - ((-1.915) * X1)) * (0.106 * X1)))))

Simplified: (0.02*X1**8 - 0.03*X1**7 -
0.01*X1**6 + 0.09*X1**5 - 0.08*X1**4
- 0.09*X1**3 + 0.06*X1**2 - 0.e-2*X1)/(0.05*X1**5
- 0.05*X1**4 - 0.1*X1**3 + 0.05*X1**2 - 0.e-2*X1)
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Operon

1 reg = SymbolicRegressor(max_length=20,
2 allowed_symbols= "add,mul,variable")
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Operon

Score: [-0.9954367876052856]
Expr: (1.041 + (0.607 * ((((((0.504 * X1)

* (0.306 * X1)) * (((-0.430) * X1)
* ((-0.941) * X1))) + (4.204 * X1))
* ((-0.002) * X1)) + ((0.179 * X1)
+ ((0.321 * X1) * (((2.229 * X1)
* (0.693 * X1)) + ((-1.017) * X1)))))))

Simplified: 0.3*X1**3 - 0.2*X1**2 + 0.11*X1 + 1.04
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Operon

1 reg = SymbolicRegressor(objectives=['r2', 'length'])
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Operon

Score: [-0.8270264863967896, 5.0]
Simplified: 4.63*X1 - 0.95

Score: [-0.9850682020187378, 9.0]
Simplified: 0.31*X1**3 - 0.64

Score: [-0.9953634142875671, 11.0]
Simplified: X1**2*(0.3*X1 - 0.2) + 1.03

Score: [-0.9954978227615356, 33.0]
Simplified: (0.62*X1**6 - 1.85*X1**5 + 1.86*X1**4 + 1.13*X1**3

- 4.65*X1**2 + 2.46*X1 - 0.31)/(2.07*X1**3
- 4.81*X1**2 + 2.46*X1 - 0.3)
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TIR

1 from pyTIR import TIRRegressor
2
3 reg = TIRRegressor(100, 100, 0.3, 0.7, (-3, 3),
4 transfunctions='Id', alg='MOO')
5 reg.fit(x.reshape(-1,1), y)
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TIR

[0.9937675615949605,20.0]
0.3*x0**3 - 0.2*x0**2 + 0.1*x0 + 1.06

[0.992757244463969,52.0]
(0.3*x0**3 - 0.15*x0**2 + 0.1*x0 + 0.99)/(0.02*x0 + 1.0)
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PySR

1 from pysr import PySRRegressor
2
3 reg = PySRRegressor(binary_operators=["+", "*"],
4 unary_operators=[])
5 reg.fit(x.reshape(-1,1), y)
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PySR

x0
4.65*x0
4.64*x0 - 0.95
0.31*x0**3
x0**2*(0.31*x0 - 0.13)
x0**2*(0.3*x0 - 0.2) + 1.03
x0*(x0*(0.3*x0 - 0.2) - 0.89) + x0 + 1.03
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Terminology learned today

• nonlinear predictors: transformed predictors by nonlinear
functions.

• piecewise predictors: binary predictors describing whether x is
inside an interval.

• transparent models: models that can be readily interpreted.
• opaque models: models that requires adittional tools for
interpretation.

• symbolic regression: technique that finds for a regression model
trying to balance accuracy and simplicity.

• genetic programming: algorithm based on evolution that searches
for a computer program that solves a problem.
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Further reading

• Chapter 3 of Gabriel Kronberger, Bogdan Burlacu, Michael
Kommenda, Stephan M. Winkler, Michael Affenzeller. Symbolic
Regression. To be plubished.
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Next lecture

• Genetic Programming
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