
Genetic Programming

Prof. Fabrício Olivetti de França

Federal University of ABC

05 Februrary, 2024

Evolution

The reasonable man adapts himself to the world; the unreason-
able one persists in trying to adapt the world to himself. There-
fore all progress depends on the unreasonable man.

– George Bernard Shaw, Maxims for Revolutionists

1

Search and Optimization

Real-world problems

Some real-world problems are hard to solve:

• There are many possible solutions, we cannot enumerate them all
• We cannot formalize the problem description, thus requiring
simplifications

• The evaluation criteria can be noisy, or change with time
• There are many constraints associated with the main problem

2

Search and Optimization Problems

Aproblem can be formalized as either a search problem or an optimization
problem.

3

Search Problem

A search problem is when given a set of candidate solutions S and a prop-
erty P : S → {T, F}, we have to find s such that s ∈ S, P (s).

4

SAT

The Boolean Satisfability problem (SAT) is described as:

Given a boolean function f(x), assign true or false values to
each xi such that the function evaluates to true.

5

SAT

For example:

f(x) = (x1 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3)

6

SAT

To make things simpler, we can use 0 and 1 to represent false and true,
respectivelly.

With 4 variables, our set S has |S| = 24 = 16 candidate solutions.

x1 x2 x3 x4

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

…

7

SAT

As the number of variables grow, the cardinality of S grows quite fast:

8

SAT

n 2n

1 2
5 32
10 1024
100 1.2e30
1000 1.1e301

9

Optimization problem

An optimization problem is when you have a set of candidate solu-
tions X and a criteria function F : X → R and you want to find
x ∈ X, x ∈ argmaxy∈Xf(y), for maximization problems and
x ∈ X, x ∈ argminy∈Xf(y) for minimization problems.

10

Optimization problem

maximization problems have the objective of finding one of
possibly many solutions that has a maximum value for the crite-
ria function.

minimization problems have the objective of finding one of pos-
sibly many solutions that has a minimum value for the criteria
function.

11

Nonlinear Optimization

G2(x) =

∣∣∣∣∣∣
∑n

i=1 cos4(xi) −
∏n

i=1 cos2(xi)√∑n
i=1 ix2

i

∣∣∣∣∣∣
subject to

n∏
i=1

xi ≥ 0.75

n∑
i=1

xi ≤ 7.5n

0 ≤ xi ≤ 10, 1 ≤ i ≤ n

12

Nonlinear Optimization

Conceptually there are an unlimited number of candidate solutions. But,
when solving using floating point numbers in a computer, we have a (large
but) finite number of solutions.

13

Nonlinear Optimization

Assuming we can represent up till 6 decimal places, we would have
10.000.000 distinct values for each variable xi.

So we have 10.000.000n = 107n candidate solutions.

14

Search and Optimization Problems

The main difference between search and optimization problem is that when
you find a solution s, P (s), we can stop the search and return the solution.

With an optimization problem, we have to check all possible solutions to be
sure it is the best solution.

15

Basic Concepts

Search Space

search space is the set of all candidate solutions.

16

Solution representation

solution representation is how we conveniently represent a so-
lution to our problem.

17

Objective-function

an objective-function is a function that maps a candidate solu-
tion to a (usually real) value measuring the quality of that solu-
tion. It can be a maximization or minimization function.

18

Neighborhood

the neighborhood of a solution s is the set of all solutions close
to s.

19

Neighborhood

The neighborhood can be defined using a distance measure or a function
that projects a solution to a power set.

20

Neighborhood

For example, for the nonlinear optimization problem, the representation is
a vector x ∈ Rd and the neighborhood can be defined through a distance
measure d:

d(x(1), x(2)) =

√√√√ d∑
i=1

(x(1)
i − x

(2)
i)2

N (X) = {y ∈ S | d(x, y) ≤ ϵ}

21

Neighborhood

For the SAT problem, we can represent the solution as a binary vector and
the neighborhood set is the function N : S → 2S that enumerates all set
of solutions that swaps the value of two elements of the current solution.

22

Neighborhood

Fundamentally, a function f : S → 2S is equivalent to f : S → S → 2.

That, uncurrying, is the same as f : S × S → 2.

In other words, it is a function that takes two solutions and returns 0 or 1
depending whether they are neighbors or not.

23

Local search

Local search algorithms start from an initial solution and iteratively walks
through the neighborhood until it reaches a point without a better neighbor.

This point is called local optimum.

24

Local search

In some situations, we can guarantee that the local optimum is the best
solution (or, global optimum).

For example, when maximizing f(x) = −x2, iteratively walking through
the neighborhood will always reach the global optima (under certain condi-
tions).

25

Local search

But in many problems, depending on the amount of local optima, this pro-
cedure can get stuck at a subpar solution.

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

26

Hill-climbing

The hill-climbing algorithm or steepest ascent, repeats iteratively:

1 hill-climbing solution =
2 best-neighbor = best (neighbors solution)
3 if best-neighbor `better-than` solution
4 then hill-climbing best-neighbor
5 else return solution

27

Random Search

Consider now an algorithm that keeps generating and evaluating random
solutions.

This is called a random search:

1 random-search =
2 solution = random-solution
3 return solution : random-search
4
5 get-best random-search

28

Complete and Optimal searches

A search algorithm is called complete if it guarantees to return a feasible
solution (i.e., any s, P (s)).

A search algorithm is called optimal if it always return the global optimum.

29

Complete and Optimal searches

The Hill-climbing is neither complete nor optimal since it cannot guarantee
any of these properties.

A random search is both complete and optimal since, given an infinite
amount of time, it will eventually find the best solution.

30

Simulated Annealing

Since we don’t want to wait an infinite amount of time, we may try some-
thing in between Hill-climbing and random search.

Simulated annealing is one of such algorithm. It is essentialy a hill-
climbing algorithm but the decision of whether to replace the current
solution with one of the neighbors is not deterministic.

31

Simulated Annealing

1 simulated-annealing solution T =
2 | T <= eps = return solution
3 | otherwise =
4 neighbor = random-neighbor solution
5 next-solution =
6 if neighbor `isBetterThan` solution
7 || random <= exp (eval neighbor - eval solution)/T
8 then neighbor
9 else solution
10 return simulated-annealing next-solution (shrink T)

32

Simulated Annealing

The main idea of SA is to pick a random neighbor s′ and accept it (i.e.,
replace current solution) if:

• This neighbor is better than the current solution or

• Accept with a probability of e
f(s′)−f(s)

T

33

Simulated Annealing

Assuming maximization, if f(s′) = f(s) it will always replace as it has
the same objective-function value.

If f(s′) < f(s) it will make the probability goes toward zero the higher
the difference between both solutions. The value of T will determine how
much worse we are willing to accept.

34

Simulated Annealing

−10 −8 −6 −4 −2 0

0

0.2

0.4

0.6

0.8

1 0.1
1
10
100

35

Simulated Annealing

Starting with a large value of T , SA will behave similarly to a random
search, accepting almost any solution.

As the value of T is reduced at every iteration, it will start to behave more
like a hill climbing, as it will be less likely to accept a worse soluion.

36

Heuristic

Heuristic

Heuristic, from the greek to find or discover, are tecniques de-
veloped to find a solution to a problem without any guarantees.

37

Heuristic

The main goal of a heuristic method is to find an approximate solution as
efficiently as possible.

38

Heuristic

George Pólya1 enumerates some tips to create a heuristic to solve a problem:

• If you cannot understand the problem, draw a diagram representing it.
• If you cannot reach a solution from an initial state, try reaching the
initial state from the solution.

• If the problem is abstract, try creating a concrete example.
• Try to solve a less restrictive problem first.

1How to Solve it, 1945
39

Greedy Heuristic

A greedy heuristic tries to iteratively build a single solution by
maximizing the instant reward.

40

Greedy Heuristic

A possible greedy heuristic for the optimization problem is to fix every vari-
able to a starting value, and optimize a single variable at every iteration.

41

Populational Heuristic

The local search and greedy heuristics so far worked with a single solution.
Their main limitation was to reach the closest optima to the starting point.

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

42

Populational Heuristic

What if we start at multiple points in parallel?

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

43

Populational Heuristic

By doing so we can reach multiple local optima at once, increasing our
chances of finding the global optima.

We can explore this idea even further by creating a competition among the
different solutions and focus the search only on the promising regions.

44

Populational Heuristic

Also, we can try to combine parts of different good solutions with the ex-
pectation of creating a better solution.

45

Populational Heuristic

The main idea of a populational heuristic is to find a balance between ex-
ploration and exploitation.

46

Populational Heuristic

exploration is the act of exploring the whole search space. Try-
ing to find new promising regions.

47

Populational Heuristic

exploitation is the act of exploring only the local neighborhood
to find the best solution in this smallr region.

48

Populational Heuristic

Both are equally important as we need to find promising regions while ex-
tracting the best from the current best regions.

49

Populational Heuristic

Let us suppose we create 30 random solutions for the SAT problem.

We can do that by sampling random bits with a probability p = 0.5 of
sampling a 1.

50

Populational Heuristic

Next, we randomly select with replacement 30 solutions from this popula-
tion with a probability proportional to the objective-function.

51

Populational Heuristic

From this selection, we will apply a random perturbation and repeat these
procedures with this new population.

52

Populational Heuristic

For a SAT problem with 91 terms and 20 variables, in 30 executions with
200 solutions and a maximum of 1000 iterations, this simple procedure will

• Reach the goal in 24 of the executions
• Reach a solution on average after 272 iterations

53

Populational Heuristic

An abstract description of this algorithm is:

1 population-heurisitc =
2 pop = random-population
3 f = eval pop
4 while not done
5 selection = selectWithReplacement pop f
6 pop = perturb selection
7 return pop

One example of populational heuristic is the evolutionary algorithm.

54

Evolutionary Algorithms

Evolution

Evolution is a natural process in which a species adapts itself successively
with the objective of:

• survival
• ecological balance
• diversity

55

Natural Selection

Natural Selection was proposed by Charles Darwin to explain why some
characteristics become very common while others disappear.

56

Natural Selection

1. More offsprings are produced than necessary
2. Characteristics of an individual defines its probability of survival
3. Characteristics are hereditary

57

Evolution

Let’s illustrate with the constant fight for survivor of rabbits in a territory
filled with foxes.

58

Evolution

In a population of rabbits, some are more clever and some are faster than
others.

Those have more chance of survival and producemore rabbits.

59

Evolution

With fast rabbits reproducing with clever rabbits, new variants of rabbits
appear:

• fast and dumb
• slow and clever
• slow and dumb
• fast and clever

60

Evolution

Nature sometimes throw a crazy rabbit in this population with some varia-
tion in the genes.

The offsprings are not exact copy of their parents, but random variations
(remember the regression to the mean).

61

Evolution

Throughout the generations, hopefully the population of rabbits become
faster and more clever than the initial population.

But the foxes also evolve…

62

Evolutionary Algorithms

1 p = initial-population
2 while not done
3 parents = select-from p
4 offsprings = recombine-from parents
5 xmen = mutate offsprings
6 p = replace-from (p + xmen)
7 return p

63

Population

Each individual of the population represents a solution represented as seen
fit.

In evolutionary algorithms this representation is called chromosome.

64

Selection

At this stage, the soon-to-be parents are selected from the population with
a probability proportional to their fitness.

The idea is that the fittest have a higher chance of reproducing and passing
their characteristics to their offsprings.

65

Recombination

Recombination simulates the reproduction of individuals of the same
species where the exchange of genetic material happens.

66

Recombination

Assuming a vectorial representation:

parent1 = [3 0 2 | 5 2 1]
parent2 = [5 1 2 | 5 0 3]

child1 = [3 0 2 5 0 3]
child2 = [5 1 2 5 2 1]

67

Mutation

Mutation promotes novelty in our current population.

It prevents that every individual is the same.

68

Mutation

Mutation in this algorithm is a random perturbation in the solution represen-
tation:

child = [3 0 *2* 5 2 1]
xman = [3 0 *4* 5 2 1]

69

Replacement

Once we have a population of offsprings, we will replace the current popu-
lation with either the offsprings or a mix of the current population and their
offsprings.

70

Replacement

Whenever we need to make a decision based on how fit an individual is, we
use the objective-function or an adaptation of that to calculate the fitness of
an individual.

Notice that conceptually the fitness is a maximization objective, but it is
sometimes used as minimization for some problems.

71

Taxonomy

• Genetic Algorithms : proposed by Holland with the main goal of
studying the adaptation phenomena.

• Evolution Strategies: introduced by Rechenberg to solve parameter
optimization of nonlinear functions.

• Evolutionary Programming: represents a program as a finite state
machine, proposed by Fogel at al.

• Genetic Programming: main goal of evolving computer programs,
proposed by Koza.

72

Evolutionary Algorithms

EvolutionaryAlgorithmswere proposed by different researchers in different
forms, but with some common properties, they all

• Work with the idea of population of solutions
• Use selective pressure, with a likelihood of survival proportional to
the fitness

• Measure the quality of each solution with a maximization
objective-function

• Combine set of solutions thus expanding the local neighborhood
• Perturb selected solutions at random

73

Evolutionary Algorithms

This generates two fundamental forces in this class of algorithms:

• Variation Operators: promote diversity and search for new
solutions (exploration).

• Selective Pressure: promote maintenance of good quality solutions
(exploitation).

74

Terminology

• Individual: a solution represented by a chromosome.
• Chromosome: the computational representation of a solution, also
known as genotype.

• Phenotype: the decoded representation.
• Fitness: a maximization objective-function that measures the quality
of an individual.

• Population: a bag of individuals.
• Crossover: or recombination, a function that combines the
information of two or more individuals.

• Mutation: a function that randomly changes one individual.

75

Selection Strategies

Selection proportional to fitness

In this strategy, assuming fi the fitness of the i-th individual, the probability
of selecting it as a parent is (assuming non-negative fitness):

pi = fi∑
j fj

So the probability is proportional to the absolute value of the fitness.

76

Selection proportional to fitness

This strategy has some drawbacks:

• Individuals with much higher fitness may end up dominating the
selection causing a premature convergence.

• When the fitness values are too close to each other, there is no
selective pressure and the choice is almost uniformly at random.

• The probability of choosing an individual may be sensitive to small
variations in fitness.

77

Selection proportional to fitness

Figure 1: Eiben, Agoston E., and James E. Smith. Introduction to evolutionary
computing. Springer-Verlag Berlin Heidelberg, 2015.

78

Selection proportional to fitness

We can alleviate some of these problems with the sigma scaling proposed
by Goldberg:

f ′
i = max(fi − (f̄ − cσf), 0.0)

pi = f ′
i∑

j f ′
j

where f̄ , σf are the mean and standard deviation fitness of the population
and c is a scaling constant, usually set to 2.

79

Rank Selection

Another strategy is to use the rank of the solutions instead of the fitness.

For example, the fitness:

[0.1, 19.3, 1.4, 0.05]

Would be mapped to:

[2, 4, 3, 1]

80

Rank Selection

To calculate the selection probability based on rank, we can use a linear or
exponential scale:

ranklinear(i) = 2 − s

µ
+ 2(i − 1)(s − 1)

µ(µ − 1)

rankexp(i) = 1 − e−i∑
j 1 − e−j

where i is the rank value, 1 < s < 2 the scaling factor, µ is the highest
observed rank.

81

Roulette Wheel Selection

The roulette selection assigns a region of a wheel to each individual, pick a
random value, and returns the individual at that spot of the wheel.

P (xi) = fitness(xi)∑
j fitness(xj)

1 spin fs = do
2 r = random (0, 1)
3 wheel = cumsum(probability fs)
4 return (firstOf (>r) wheel)

82

Roulette Wheel Selection

If the fitness of our individuals are [324, 1, 100, 289]

The probability for each individual is [0.454, 0.001, 0.140, 0.405].

83

Roulette Wheel Selection

Next we calculate the cummulative sum of these probabiilities, defining the
slice of the wheel:

[0.454, 0.455, 0.595, 1.000]

84

Roulette Wheel Selection

Now we choose a random value 0 ≤ r ≤ 1 and check which slice this
value belongs to. The individual within this slice is chosen as one of the
parents for reproduction.

[0.454, 0.455, 0.595, 1.000]

For r = 0.3 we choose the first individual.

For r = 0.4541 we choose the second individual.

85

SUS

The main problem with this approach is that by spinning the wheel multiple
times we may not generate a representative sample of our population.

We can expand this idea by spinning the wheel with multiple arrows and
sample multiple individuals at once. This is known as stochastic universal
sampling (SUS)

86

SUS

1 sus n fs = do
2 r = random(0, 1/n)
3 wheel = cumsum(probability(fs))
4 choices = for [1..n] (\i -> firstOf (>(r*i)) wheel)
5 return choices

87

SUS

This strategy guarantees that the number of times the i-th individual is
selected is at least the integral part of n · P (i).

88

Tournament Selection

The tournament selection simply samples k individuals of the population
and returns the best among them.

This is a local selection strategy, since it only uses the knowledge about the k

sampled individuals as opposed to the roulette wheel that requires knowing
the fitness of the entire population.

89

Tournament Selection

An important characteristic of this strategy is that it is invariant to translation
and transposition. The choice of fitness does not affect the results of this
method.

90

Tournament Selection

The probability that an individual is selected depends of:

• Its rank in the population
• The size k of the tournament (the higher the size, the higher the bias
to above average individuals)

• If the individuals are selected with or without replacement (without
replacement, the k − 1 worse will never be selected)

91

Tournament Selection

1 tournament k pop = do
2 competitors = sampleWithReplacement(k, pop)
3 return (best competitors)

92

Lexicase Selection

Most selection strategies so far compare individuals using an aggregated
score (i.e., the fitness).

In some situations, we can evaluate the individual locally.

For example, in regression we can calculate the squared residue for a
single point or the sum of squared residues for a selection of the sample.

93

Lexicase Selection

Evaluating the aggregated value we stimulate generalists. But during the
evolution process we may want to combine two or more specialists.

94

Lexicase Selection

Assuming maximization (fitness) and xy is the list of tuples (x, y) from our
sample:

1 lexicase pop xy =
2 pool = pop
3 cases = shuffle xy
4 return (while-loop pool cases)
5
6 while-loop pool (case:cases)
7 | sizeOf pool == 1 = return (head pool)
8 | sizeOf cases == 0 = return (random pool)
9 | otherwise =
10 best = max (partial-fit case) pool
11 pool' = filter (==best . partial-fit case) pool
12 while-loop pool' cases

95

Lexicase Selection

When our fitness is continuous and we want some tolerance between two
very similar individuals, we can use the ϵ-lexicase selection.

In this version, we simply replace the comparison with the best value with
a comparison to whether the difference between the best value and the

current value is within an ϵ radius.

96

Replacement

Evolutionary Algorithms often works with one of two popular models: gen-
erational and stationary.

97

Generational

Generationalmodel in a population of sizeµwe chooseµ parents
and generate λ = µ offsprings that entirely replace the parent
population.

98

Stationary

In the stationary model, we generate λ < µ offsprings to replace
some of the current solutions in the population. A special case is
when λ = 1.

99

Replacement

When using the stationary model, we have to select which individuals will
survive and which will be replaced.

100

Fitness based replacement

In the fitness based replacement, we use one of the selection strategies to
select the next generation.

101

Replace the worst

In this strategy we pick n worse individuals of the current population and
replace with the offsprings.

102

Elitism

In this strategy, we keep the best n individuals in the population and use
another strategy to select the remainders.

103

Multi-objective

Sometimes we want to optimize more than one objective and they are con-
flicting with each other (if we improve one, we make the other worse).

For these situations we can apply a Multi-objective version of the evolution-
ary algorithms.

104

Multi-objective

The main difference is in the selection and reproduction operators in which
the comparison between individuals are made through the dominance oper-
ator instead of equality.

105

Multi-objective

In multi-objective optimization we evaluate the individuals using m > 1
objectives. As such, we have to redefine how we compare two solutions.

106

Multi-objective

Instead of saying one solution is better than another, we say that one solution
dominates another (denoted by f(x1) ≺ f(x2)) if both:

∀i ∈ {1 . . . m} : fi(x1) ≤ fi(x2),
∃i ∈ {1 . . . m} : fi(x1) ̸= fi(x2),

are true considering a minimization problem.

107

Multi-objective

In short, this means that a certain solution dominates the other if it is equal
or better in every objective and better in at least one of them.

108

Multi-objective

The Pareto optimal set is defined as the set of optimal solutions that are not
dominated by any other:

P = {x∗ ∈ Ω | ∄x ∈ Ω : f(x) ≺ f(x∗)}.

109

Multi-objective

And the Pareto front is represented as the image of this set:

F = {f(x) : x ∈ P}.

110

Multi-objective

A Multi-objective approach for evolutionary algorithms is the Fast Non-
dominated sorting algorithm (NSGA-II)2 together with the Crowding Dis-
tance.

The only changes in the algorithm is the replacement step that takes the
dominance into consideration

2Deb, Kalyanmoy, et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II.”
IEEE transactions on evolutionary computation 6.2 (2002): 182-197.

111

Multi-objective

1 replacement pop =
2 S = [filter (dominatedBy i) pop | i <- pop]
3 n = [lengthIf (dominates i) pop | i <- pop]
4 pop' = [i | i, ni <- enumerate n, ni == 0]
5 case length pop'
6 == length pop -> return pop'
7 > length pop -> crowding pop' (length pop)
8 < length pop -> return (pop' + replacement (pop / pop'))

112

Multi-objective

1 crowding pop nPop =
2 dists = array 0 `ofSize` nPop
3 for j <- [0 .. nObjs]
4 ixs = argsortByObj j pop
5 for (prev, i, next) <- window ixs
6 dists[i] = dists[i] + (dists[next] - dists[prev])
7 dists[first ix] = inf
8 dists[last ixs] = inf
9 ixs = argsort (-dists)
10 return (take nPop ixs)

113

Genetic Programming

Evolving Programs

Is it possible to evolve a computer program using just a sample of inputs
and outputs?

114

What is a program?

A program can be thought as a function that gets one or more input
arguments and return a value of a certain type.

115

What is a program?

This function can be decomposed in elementa functions that belong to our
grammar:

countElements [1, 2, 1, 3, 2, 1] = [(1,3), (2,2), (3,1)]

countElements = sort => group => map (head, length)

116

What is a program?

Depending of our context, the grammar can be reduced!

A classification problem has the following structure:

if predicate
then class1
else class2

117

What is a program?

And the predicate is simply a boolean function:

x1 > 3 && x2 <= 5

118

What is a program?

We only need to evolve the predicate function! We have >, >=, <, <=,
==, !=, number, var, &&, ||, not as part of our grammar.

119

What is a program?

A mathmatical expression is also a program:

f(x) = x[1]^2 - x[2]*x[3]*cos(pi*x[1])

120

Evolving a program

To evolve a program we have first to define the set of functions and termi-
nals:

Name Set

Function
{
+, −, ∗, /,2

}
Terminal R ∪ {x1, x2, x3}

121

Evolving a program

Each function requires a number of input arguments, this number is called
arity.

The function + has arity 2, the partially applied function 2 has arity 1.

The function if-then-else has arity 3.

122

Evolving a program

These sets must obey the formal language rules:

• Every element of the terminal set T must be a valid and correct
expression.

• If f ∈ F is a function with arity n and e1, e2, . . . , en are valid and
correct expressions, then fe1 . . . en is also a valid and correct
expression.

• There are no other correct form besides these.

123

Evolving a program

It is also possible that the expression contains the type information.

A typed function must get the arguments of the correct type.

The expression e1 ∨ e2 requires that e1, e2 are booleans.

124

Genetic Programming

The main evolutionary algorithm that evolves program is called Genetic
Programming (GP).

125

Genetic Programming

1 gp =
2 pop = randomPopulation
3 until convergence do
4 children = empty
5 until length(children)==lambda do
6 mut? = random(0,1)
7 if mut?
8 then ix = random(0, n)
9 child = mutate(pop[ix])
10 children = children <> child
11 else (p1, p2) = randomParents(pop)
12 (c1, c2) = combine(p1, p2)
13 children = children <> [c1, c2]
14 pop = replace pop children
15 return pop

126

Evaluating program

The fitness of a program is proportional to the amount of the test cases that
passes within the training data.

If the output is a continuous value, we can measure the absolute or square
difference between generated and expected outputs.

127

Partial Functions

If the representation allows invalid programs, there is a need to apply some
treatments to either fix the program or protect the output.

For example, it is common to use the analytical quotient instead of division:

aq(a, b) = a√
1 + b2

128

Representação

There are many ways to represent a program:

• Linear
• Tree
• Direct Acyclic Graph

129

Linear Representation

With the linear representation, a program is reprenseted in its imperative
form with state changes. In other words, a source code similar to an assem-
bly language.

130

Linear Representation

This representation allows the programs to be coded as bytecodes allowing
us to use the common mutation and recombination of binary representation.

131

Linear Representation

The Gene Expression Programming3 algorithm represents a program as an
array of pre-fixed size:

Q ∗ − + abcd

3Ferreira, Candida. “Gene expression programming: a new adaptive algorithm for
solving problems.” arXiv preprint cs/0102027 (2001).

132

Polish Notation

We can also represent a function in polish notation:

∗ + x2y = (x + 2) ∗ y

133

Graph representation

The algorithm Cartesian Genetic Programming4 represents a program as a
graph:

Figure 2: FONTE:
http://www.cgplibrary.co.uk/files2/CartesianGeneticProgramming-txt.html

4Miller, Julian Francis, and Simon L. Harding. “Cartesian genetic programming.”
Proceedings of the 10th annual conference companion on Genetic and evolutionary
computation. 2008.

134

Tree Representation

Figure 3: Fonte: Eiben, Agoston E., and James E. Smith. Introduction to
evolutionary computing. Springer-Verlag Berlin Heidelberg, 2015.

135

Logic Tree

Figure 4: Fonte: Eiben, Agoston E., and James E. Smith. Introduction to
evolutionary computing. Springer-Verlag Berlin Heidelberg, 2015.

136

Expression Tree

Figure 5: Fonte: Eiben, Agoston E., and James E. Smith. Introduction to
evolutionary computing. Springer-Verlag Berlin Heidelberg, 2015.

137

Initialization of a Tree

When creating an initial solution, wemust be careful that we create a correct
expression (i.e., the leaves are terminals) and that the program is not too
large.

138

Full method

In the full method, we create a complete tree with depth d. In other words,
all of the branches of the tree must have the same depth.

139

Método Full

1 full max-depth =
2 node = if max-depth == 0
3 then sampleTerm
4 else sampleNonTerm
5 children = [full (max-depth - 1) | _ <- [1 .. arity(node)]]
6 return (Node node children)

140

Grow Method

The grow method freely generates a tree up to a maximum depth d, where
it will sample only terminals.

Before reaching the maximum depth, the sample of a node is biased toward
non-terminals to avoid short programs.

141

Método Grow

1 grow max-depth =
2 ratio = n_terms / n_symbols
3 r = random(0,1)
4 node = if max-depth == 0 or r < ratio
5 then sampleTerm
6 else sampleNonTerm
7 children = [grow (max-depth - 1) | _ <- [1 .. arity(node)]]
8 return (Node node children)

142

Ramped Half-and-Half

In Ramped Half-and-Half we create a population of initial solutions by
varying the application of the previous methods with different values of

maximum depths.

If we want to create n individuals, we use full in half of them and grow to
the other half. For each method, we choose a maximum depth from a

range [min_depth, max_depth] uniformly distributed.

143

Ramped Half-and-Half

1 ramped min-depth max-depth n-pop =
2 range = max-depth - min-depth + 1
3 n = n-pop / 2 -- divisão inteira
4 (q, r) = (n / 2, n % 2)
5 treesFull = [full min-depth | _ <-[1..q]]
6 treesGrow = [grow min-depth | _ <-[1..q+r]]
7 trees = ramped(min-depth+1, max-depth, n-pop - n)
8 return (treesFull + treesGrow + trees)

144

Mutation

Subtree Replacement

In this mutation operator we choose a subtree and replace it by a new ran-
domly generated tree.

We can use either the grow or full method to create this random subtree.

145

Subtree Replacement

+

∗

x0 2

exp

÷

log

x1

3

+

∗

x0 2

−

+

x1 x0 3

2

146

Node Mutation

With node mutation, we choose a node and change it with another token of
the same arity.

147

Node Mutation

+

∗

x0 2

exp

÷

log

x1

3

+

∗

x0 2

log

÷

log

x1

3

148

Swap Mutation

In swap mutation, a non-terminal node is chosen and its children are
swapped (if they are of the same type).

149

Swap Mutation

+

∗

x0 2

exp

÷

log

x1

3

+

∗

2 x0

exp

÷

log

x1

3

150

Shrink Mutation

In shrink mutation, a random nonterminal node is replaced by one of its
children.

151

Shrink Mutation

+

∗

x0 2

∗

∗

x0 2

÷

log

x1

3

+

∗

x0 2

∗

x0 2

152

Recombination

The recombination operator simply chooses a subtree of each parent and
swap them.

153

Recombination

Figure 6: Fonte: Eiben, Agoston E., and James E. Smith. Introduction to
evolutionary computing. Springer-Verlag Berlin Heidelberg, 2015.

154

Bloat

Bloat

In the initial generations, it is common to observe the increase of the average
fitness of the population together with the increase of the size of the tree.

At a certain point, it is possible to observe the increase in size without any
increase in the average fitness.

155

Bloat

This phenomenon is known as bloat and it may be a problem since the
computational cost to evaluate a larger program is higher.

Not only that, but the program loses its interpretability potential.

156

Bloat

A hypothesis for this is the replication of accuracy theory which says the
ability to generate a child solution that is functionally similar to its parents
favors its replication in the population.

Bloated expressions favors this property.

157

Bloat

In the removal bias theory, we notice that a tree can have inactive codes.
When we apply reproduction and mutation in those inactive subtrees, there
is a chance of increasing the size without any benefit to the fitness.

158

Bloat

The programs search space theory says that after a certain size, the aver-
age fitness will not change with size.

The reproduction of large programs tend to create even larger childrenwhich
propagates throughout the generation favoring a population of large pro-
grams.

159

Discarding bloat

One way to deal with bloat is to disallow the generation of programs of a
certain size.

If a children is larger than the maximum allowed size, it is discarded.

160

Discarding bloat

The main problem of this solution is that those trees close to the maximum
allowed size will have many copies in the population as their children will
likely be discarded.

161

Discarding bloat

Another solution is to return the children that violates such restrictions with
a very small fitness such that it will be naturally discarded during replace-
ment.

162

Terminology learned today

• search problem: find a valid solution from a set.
• optimization problem: find the best solution from a set.
• maximization problem: the best solution has the maximum value.
• minimization problem: the best solution has the minimum value.
• search space: set of all candidate solutions.
• solution representation: convenient representation of a solution.
• objective-function: functiona that maps a candidate to a value
measuring the quality of the solution.

• neighborhood: set of candidate solutions close to a solution s.

163

Terminology learned today

• local optima: the best solution inside the neighborhood.
• global optima: the best solution of the search space.
• local search: searches for the nearest local optima.
• heuristic: technique to efficiently find a solution without any
guarantees.

• exploration: act of exploring the search space.
• exploitation: act of exploring a promising neighborhood.

164

Further reading

• Field Guide - GP
• Livro - Koza
• Livro 2 - Koza
• Livro 3 - Koza
• Livro 4 - Koza

165

http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli08_fieldguide.pdf
http://gpbib.cs.ucl.ac.uk/gp-html/koza_book.html
http://gpbib.cs.ucl.ac.uk/gp-html/koza_gp2.html
http://gpbib.cs.ucl.ac.uk/gp-html/koza_gp3.html
http://gpbib.cs.ucl.ac.uk/gp-html/koza_gp4.html

Further reading

• Genetic Programming The Movie Part 1
• Genetic Programming The Movie Part 2
• Genetic Programming III: Human Competitive Machine Intelligence
• Genetic Programming IV Video: Human-Competitive Machine
Intelligence

• Chapter 4 of Gabriel Kronberger, Bogdan Burlacu, Michael
Kommenda, Stephan M. Winkler, Michael Affenzeller. Symbolic
Regression. To be plubished.

166

https://youtu.be/tTMpKrKkYXo
https://youtu.be/pRk6cth7Bpg
https://youtu.be/8DY7akqFvfw
https://youtu.be/R10GopQBsMc
https://youtu.be/R10GopQBsMc

Next lecture

• Nonlinear evolutionary symbolic regression

167

Acknowledgments

168

	Search and Optimization
	Basic Concepts
	Heuristic
	Evolutionary Algorithms
	Selection Strategies
	Genetic Programming
	Mutation
	Bloat

