
Non-evolutionary Symbolic Regression

Prof. Fabrício Olivetti de França

Federal University of ABC

05 Februrary, 2024

FFX: FAST, SCALABLE,
DETERMINISTIC SYMBOLIC
REGRESSION TECHNOLOGY

FFX: FAST, SCALABLE, DETERMINISTIC SYMBOLIC REGRES-
SION TECHNOLOGY

• Wide adoption of a technology comes with the practical use.

• Users must be able to use it without the need to know the details.

• Symbolic Regression has many successful results but it is still not
widely adopted.

1

FFX: FAST, SCALABLE, DETERMINISTIC SYMBOLIC REGRES-
SION TECHNOLOGY

Trent McConaghy proposed the Fast Function eXtraction (FFX)1 algorithm:

• Enumerates a massive set of linear and nonlinear basis functions
(feature transformations)

• Use pathwise regularized (l1 and l2) learn to fit a linear combination
of these basis functions

• Nondominated filter to the number of basis and validation error,
returning a Pareto front of models.

1McConaghy, Trent. “FFX: Fast, scalable, deterministic symbolic regression technology.”
Genetic Programming Theory and Practice IX (2011): 235-260.

2

FFX: FAST, SCALABLE, DETERMINISTIC SYMBOLIC REGRES-
SION TECHNOLOGY

In summary, it createsNB features equivalent to a functionΦ : Rd → RNB

that generates the model:

f(x; β) = Φ(x)β

3

FFX: FAST, SCALABLE, DETERMINISTIC SYMBOLIC REGRES-
SION TECHNOLOGY

The linear coefficients are fitted using an elastic net formulation that com-
bines l1 and l2 regularization:

β̂ = argmin
β

∥y − Φ(x)β∥2 + (1 − ρ)λ∥β∥2 + λ∥β∥1

As already discusses, ∥β∥2 alleviates the issue of correlated variables mak-
ing the fitting more stable while ∥β∥1 stimulates the creation of a sparse
model by setting some parameters to 0.

4

Pathwise Elastic Nets

The idea of pathwise elastic nets is to start with a very large value ofλwhere
the fitting will set β = 0.

After that, it iteratively reduces the λ to create denser models, returning a
set of different models with a tradeoff of sparsity and accuracy.

5

Pathwise Elastic Nets

Friedman2 proposed the coordinate descent algorithm that starts from the
smaller λmax in which all parameters are 0 and then it iterates in every di-
mension updating its parameter while holding every other parameter fixed.

2Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. “Regularization paths for
generalized linear models via coordinate descent.” Journal of statistical software 33.1
(2010): 1.

6

FFX: Step One

The first part of the first step creates all the basis functions composed of the
original predictors, squared predictors, square root of the predictors and the
application of any function in this first set of predictors.

1 b1 = [b | xi <- x
2 , e <- [0.5, 1.0, 2.0]
3 , op <- [id, abs, log, ln, ...]
4 , let b = op(xi^e)
5 , ok (eval b x)
6]

We only keep the new predictors that can be properly evaluated (i.e., not
NaN or inf).

7

FFX: Step One

In the second part of the first step, we use the first set of basis to generate
a second set with interaction terms but allowing only the occurrence of one
non-Id function in the interaction:

1 b2 = [b | bi <- b1
2 , bj <- b1
3 , bj.op == id
4 , let b = bi * bj
5 , ok (eval b x)
6]
7
8 b = union b1 b2

8

FFX: Step One

The final part of this first step, creates a rational function out of the current
basis.

A rational regression model is described as:

f(x; β, θ) = xβ

1 + xθ

This model is often used in the context of polynomial regression and it is
capable of find accurate models with a lower degree.

9

FFX: Step One

If we disregard the noise term ϵ of our regression model, we can perform
an algebraic manipulation such as:

y = xβ

1 + xθ

y(1 + xθ) = xβ

y + yxθ = xβ

y = xβ − yxθ

Solving for this linear model can give a good starting point for optimizing
the parameters.

10

FFX: Step One

In the third part of the first step, FFX adds the rational basis:

1 b3 = [b | bi <- b
2 , bi * y
3]
4
5 b = union b b3

11

FFX: Step Two

In the next step, FFX applies the pathwise regularized learning to find a
set of different linear models for different values of λ up until a maximum
number of nonzero parameters Nmax−bases:

1 step-two x y b rho eps =
2 lambda-max = max (transpose x * y)/(N * rho)
3 lambda-vec = logspace(log10(lambda-max * eps),
4 log10(lambda-max), N-lambda)
5 beta = [0 | _ [1..P]]
6 betas = iterateUntil (\a -> nonzero a >= max-bases)
7 (beta, lambda-vec)
8 return betas
9
10 iterateUntil p (beta, lambda-vec)
11 | p beta = []
12 | otherwise = lambda = head lambda-vec
13 beta' = elasicnet b y lambda rho beta
14 return (beta : iterateUntil p (beta', tail lambda-vec))

12

FFX: Step Three

Finally, in step three, it creates the list of the models discarding the zero
parameters and apply a nondominated sorting to return the Pareto front of
the models:

1 step-three betas b =
2 m = [(beta', b') | beta <- betas
3 , let ix = nonzeroIxs beta
4 , let beta' = extract ix beta
5 , let b' = extract ix b
6]
7 p1 model = length model
8 p2 model = accuracy model
9 return (nondominatedBy p1 p2 m)

Whenever it needs to select a single model, it uses the model with the
lowest validation error.

13

FFX

Figure 1: McConaghy, Trent. “FFX: Fast, scalable, deterministic symbolic
regression technology.” Genetic Programming Theory and Practice IX (2011):
235-260.

14

FFX: Pros and Cons

• FFX is one of the fastest SR methods
• It returns a set of alternative models
• It has competitive accuracy (but not to the state-of-the-art)

But

• Using only linear parameters may limit the usefulness of some basis
function

• It supports only two-way interaction
• It supports only unary functions

15

FFX with nonlinear parameters

Kammerer et al.3 extended FFX to support nonlinear parameters. It does
so by introducing some changes to the original algorithm:

• The nonlinear functions introduces a scale and translation nonlinear
parameter, so instead of creating f(xi) they create f(θaxi + θb).
The only exception are log and exp that requires only a scale or
translation parameter, respectively.

• At the first step, it just creates the function transformation basis
functions, the interactions are performed at a later step.

3Kammerer, Lukas, Gabriel Kronberger, and Michael Kommenda. “Symbolic Regression
with Fast Function Extraction and Nonlinear Least Squares Optimization.” International
Conference on Computer Aided Systems Theory. Cham: Springer Nature Switzerland,
2022.

16

FFX with nonlinear parameters

• It optimizes the parameters with Variable Projection4, an efficient
method to optimize linear and nonlinear parameters.

• After optimization, it keeps the nonlinear parameters as constants and
optimizes the linear parameter with pathwise elastic nets

• They combine the 10 most important univariate basis functions
creating pairwise interaction and repeat the optimization procedure.

4Golub, Gene, and Victor Pereyra. “Separable nonlinear least squares: the variable
projection method and its applications.” Inverse problems 19.2 (2003): R1.

17

FFXNL

Figure 2: Kammerer, Lukas, Gabriel Kronberger, and Michael Kommenda.
“Symbolic Regression with Fast Function Extraction and Nonlinear Least Squares
Optimization.” International Conference on Computer Aided Systems Theory.
Cham: Springer Nature Switzerland, 2022.

18

FFXNL

Figure 3: Kammerer, Lukas, Gabriel Kronberger, and Michael Kommenda.
“Symbolic Regression with Fast Function Extraction and Nonlinear Least Squares
Optimization.” International Conference on Computer Aided Systems Theory.
Cham: Springer Nature Switzerland, 2022.

19

FFXNL

Figure 4: Kammerer, Lukas, Gabriel Kronberger, and Michael Kommenda.
“Symbolic Regression with Fast Function Extraction and Nonlinear Least Squares
Optimization.” International Conference on Computer Aided Systems Theory.
Cham: Springer Nature Switzerland, 2022. 20

FFX with nonlinear parameters

• They achieved a significant improvement in accuracy with FFX NLS.
• The model length and runtime are almost the same.
• FFX NLS accuracy is worse than some state-of-the-art SR methods.

21

A Greedy Search Tree Heuristic for
Symbolic Regression

A Greedy Search Tree Heuristic for Symbolic Regression

Similar to FFX, de França 5 proposed SymTree, a greedy search that creates
a symbolic regression model iteratively.

5de França, Fabrício Olivetti. “A greedy search tree heuristic for symbolic regression.”
Information Sciences 442 (2018): 18-32.

22

A Greedy Search Tree Heuristic for Symbolic Regression

In thi work, the author defines the search space of symbolic model as those
functions in the form:

fIT (x; θ) = w0 +
m∑

j=1
θj · (fj ◦ rj)(x)

linear coefficient

transformation function interaction function

rj(x) =
d∏

i=1
x

kij

i

strength of interaction

23

A Greedy Search Tree Heuristic for Symbolic Regression

This representation is called Interaction-Transformation as it is a regres-
sion model defined by the composition of predictors interaction and a trans-
formation univariate function.

Different from FFX, the interactions are not limited to xixj but it can be
any monomial or divinding monomials involving the predictors.

On the other hand, it does not support interaction terms of the type xif(xj).

24

A Greedy Search Tree Heuristic for Symbolic Regression

The algorithm starts with a linear model f(x; β) = xβ and iteratively ap-
plies an expansion function to the set of current models.

1 symtree it cadidates
2 | it > max-iters = best-from candidates
3 | otherwise = symtree (it+1) (map expand candidates)
4
5 symtree 0 [x]

25

A Greedy Search Tree Heuristic for Symbolic Regression

The expansion evaluates the interaction between the current terms of the
expression, inverse interacions and transformations. It keeps only those
individual terms that improve the accuracy.

Then it performs a greedy grouping of the terms with the objective of max-
imizing the accuracy.

1 expand terms =
2 candidates =
3 [term | t <- interaction terms
4 , score(terms + t) > score(terms)] ++
5 [term | t <- inverse terms
6 , score(terms + t) > score(terms)] ++
7 [term | t <- transformation terms
8 , score(terms + t) > score(terms)]
9 return (greedy terms candidates)
10
11 greedy terms [] = []
12 greedy terms candidates =
13 e, t = greedysearch terms candidates
14 return (e : greedy terms t)

26

A Greedy Search Tree Heuristic for Symbolic Regression

Given the expression sin(x1x2) + x3 + x−1
4 , the interaction function will

generate the terms

x1x2x3

x1x2x−1
4

x3x−1
4

27

A Greedy Search Tree Heuristic for Symbolic Regression

The inverse function will create

x1x2x−1
3

x1x2x4

x−1
1 x−1

2 x3

x3x4

x−1
1 x−1

2 x−1
4

x−1
3 x−1

4

28

A Greedy Search Tree Heuristic for Symbolic Regression

And the transformation, for the set F = {sin, log} will create

log(x1x2)
sin(x3)
log(x3)
sin(x−1

4

log(x−1
4))

29

A Greedy Search Tree Heuristic for Symbolic Regression

The greedysearch function simply finds the group of terms that improves
the model and return a new model with the leftover terms.

1 greedysearch terms candidates =
2 let c1 = [c | c <- candidates
3 , score(terms+c) > score(terms)
4]
5 c2 = c / c1
6 return (terms + c1, c2)

30

A Greedy Search Tree Heuristic for Symbolic Regression

In short, this procedure creates new terms for each one of the current ex-
pressions and creates new expressions as the composition of the current
expression and the set of new terms that improves the score.

While FFX is a method that departs from the full model and prune it to a
manageable size, SymTree starts from a simple model and insert new terms
up until a certain stop criteria.

31

A Greedy Search Tree Heuristic for Symbolic Regression

Figure 5: de França, Fabrício Olivetti. “A greedy search tree heuristic for
symbolic regression.” Information Sciences 442 (2018): 18-32.

32

A Greedy Search Tree Heuristic for Symbolic Regression

Figure 6: de França, Fabrício Olivetti. “A greedy search tree heuristic for
symbolic regression.” Information Sciences 442 (2018): 18-32. 33

A Greedy Search Tree Heuristic for Symbolic Regression

The results showed that SymTree obtained more accurate and smaller mod-
els than most SR algorithms and it was successful in retrieving the correct
expression more frequently than FFX.

On the other hand, in some high-dimensional datasets it can have a dimen-
sionality explosion with the creation of very large expressions.

Since it is a greedy approach, it will not likely return the best possible
expression.

34

Symbolic Regression by Exhaustive
Search

Symbolic Regression by Exhaustive Search

Exhaustive Search was explored in 6 where the authors proposed a grammar
that comprehends rational of polynomials with linear and nonlinear terms
in the search space.

The grammar prohibits the chaining of nonlinear functions to avoid complex
expressions and remove some redundant expressions. For example, the gra-
mar can build x1x2 + x1x3 but it cannot generate x1(x2 + x3).

This reduction is necessary to make the enumeration of all expressions pos-
sible.

6Kammerer, Lukas, et al. “Symbolic regression by exhaustive search: Reducing the
search space using syntactical constraints and efficient semantic structure deduplication.”
Genetic programming theory and practice XVII (2020): 79-99.

35

Symbolic Regression by Exhaustive Search

1 Expr -> const * Term + Expr
2 | const * Term + const
3 Term -> RecurringFactors * Term
4 | RecurringFactors | OneTimeFactors
5 RecurringFactors -> VarFactor | LogFactor
6 | ExpFactor | SinFactor

36

Symbolic Regression by Exhaustive Search

1 VarFactor -> <variable>
2 LogFactor -> log (SimpleExpr)
3 ExpFactor -> exp (const * SimpleTerm)
4 SinFactor -> sin (SimpleExpr)

37

Symbolic Regression by Exhaustive Search

1 OneTimeFactors -> InvFactor * SqrtFactor * CbrtFactor
2 | InvFactor * SqrtFactor
3 | InvFactor * CbrtFactor | SqrtFactor * CbrtFactor
4 | InvFactor | SqrtFactor | CbrtFactor
5 InvFactor -> 1/ (InvExpr)
6 SqrtFactor -> sqrt (SimpleExpr)
7 CbrtFactor -> cbrt (SimpleExpr)

38

Symbolic Regression by Exhaustive Search

1 SimpleExpr -> const * SimpleTerm + SimpleExpr
2 | const * SimpleTerm + const
3 SimpleTerm -> VarFactor * SimpleTerm | VarFactor
4 InvExpr -> const * InvTerm + InvExpr
5 | const * InvTerm + const
6 InvTerm -> RecurringFactors * InvTerm
7 | RecurringFactors * SqrtFactor * CbrtFactor
8 | RecurringFactors * SqrtFactor
9 | RecurringFactors * CbrtFactor
10 | SqrtFactor * CbrtFactor | RecurringFactors
11 | SqrtFactor | CbrtFactor

39

Example of expression generator

We start with Expr and replace each nonterminal with a random production
rule (here we replaced const with c and <variable> with var).

1 Expr
2 c * Term + Expr
3 c * RecurringFactors * Term + Expr
4 c * ExpFactor * Term + Expr
5 c * exp(c * SimpleExpr) * Term + Expr
6 c * exp(c * c * SimpleTerm + c)* Term + Expr
7 c * exp(c * VarFactor + c)* Term + Expr
8 c * exp(c * <var> + c)* Term + Expr
9 c * exp(c * <var> + c)* OneTimeFactors + Expr
10 c * exp(c * <var> + c)* InvFactor + Expr
11 c * exp(c * <var> + c)* 1/(SimpleExpr) + Expr
12 c * exp(c * <var> + c)* 1/(c * SimpleTerm + c) + Expr
13 c * exp(c * <var> + c)* 1/(c * <var> + c) + Expr
14 c * exp(c * <var> + c)* 1/(c * <var> + c) + c * <var> + c
15 c * exp(c * var + c) * 1/(c*var + c) + c * var + c

40

Symbolic Regression by Exhaustive Search

To iterate the search space we can use a queue or a stack data structure to
store the open expressions and keep only the best finished expression found
so far.

1 enumerate =
2 open-exprs = singleton-queue Expr
3 seen-hases = empty-set
4 best-expr = const
5 return (explore open-exprs seen-hashes best-expr)

41

Symbolic Regression by Exhaustive Search

1 explore open-exprs seen-hashes best-expr =
2 | is-empty open-exprs = best-expr
3 | otherwise = let
4 (expr, open-exprs') = pop open-exprs
5 non-terminal = left-most expr
6 new-exprs = [e | rule <- rules non-terminal
7 , let e = apply rule expr
8 , hash e `notElem` seen-hashes
9]
10 sentences = filter is-sentence new-exprs
11 hashes = map hash new-exprs
12 open = filter is-open new-exprs
13 explore (open-exprs' ++ open)
14 (seen-hashes ++ hashes) (replace-best best sentences)

42

Symbolic Regression by Exhaustive Search

The hash function for expression trees was proposed in 7 and can be sum-
marized as a fold right procedure on trees that applies any hash function to
the child nodes and at every internal node concatenates the hash of the node
with the hash of the left child and the hash of the right child.

1 hash-tree h tree = foldr (hash-with h) tree
2
3 hash-with h (Leaf Val) = h Val
4 hash-with h (Node l n r)
5 | is-assoc n && r < l = simplify (h n ++ r ++ l)
6 | otherwise = simplify (h n ++ l ++ r)

The simplify function applies some simple algebraic rules to remove
redundancy.

7Burlacu, B., Kammerer, L., Affenzeller, M., Kronberger, G.: Hash-based Tree Similarity
and Simplification in Genetic Programming for Symbolic Regression. In: Computer Aided
Systems Theory, EUROCAST 2019 (2019)

43

Symbolic Regression by Exhaustive Search

The authors also proposed to replace the queue with a priority queue where
the priority is established by

priority(p) = NMSE(p) − w
len(p)
lenmax

where NMSE is the normalized mean squared error, p is the fitted expres-
sion with all non-terminal tokens replaced by parameters and lenmax is the
maximum allowed size for the search.

Notice that this is a pessimistic heuristic rather than optimistic, as required
by a A∗ implementation.

44

Symbolic Regression by Exhaustive Search

Sample results from the paper:

Figure 7: Kammerer, Lukas, et al. “Symbolic regression by exhaustive search:
Reducing the search space using syntactical constraints and efficient semantic
structure deduplication.” Genetic programming theory and practice XVII (2020):
79-99.

45

Symbolic Regression by Exhaustive Search

• When we want to generate short expressions with certain constraints
to the search space, the exhaustive search will return the best
expression among its set of expressions

• With a guided search, it can explore the search space more efficiently,
possibly discarding bad quality expressions

• It depends on nonlinear optimization that can return suboptimal
results, possibly discarding some good solutions

• It can be particularly sensitive to noise

46

Exhaustive Symbolic Regression

Exhaustive Symbolic Regression

Deaglan, et al. proposed a similar approach to enumerate the search space
of symbolic models8 named Exhaustive Symbolic Regression (ESR) that
generates the set of all parametric family of functions at a given complexity.

The complexity is measured as the number of nodes in the expression tree.

8Bartlett, Deaglan J., Harry Desmond, and Pedro G. Ferreira. “Exhaustive symbolic
regression.” IEEE Transactions on Evolutionary Computation (2023).

47

Tree Representation

They constraint the tree representation to binary, unary, nullary operators:

1 data Expr = Binary Expr Op Expr
2 | Unary Fun Expr
3 | Nullary Term
4
5 data Op = Add | Sub | Mul | Div | Pow
6 data Fun = Exp | Log | Square | Sqrt
7 data Term = Var | Param

48

Tree Representation

For convenience, they flatten the tree representation as a list representing
the pre-order traversal of the nodes.

+

pow

log

x

θ1

exp

∗

θ2 x

[+, pow, log, x, theta1, exp, *, theta2, x]

49

Generating Valid Trees

In the first step they create lists of k elements for a varying number of k

with the values 0, 1, 2 representing the nullary, unary, and binary operators.

This makes easier to enumerate all valid expressions.

50

Generating Valid Trees

1 k = 1
2 [0]
3
4 k = 2
5 [1, 0]
6
7 k = 3
8 [2, 0, 0]
9
10 k = 4
11 [1,1,1,0]
12 [1,2,0,0]
13 [2,0,1,0]
14 [2,1,0,0]

After this step, the numbers can be replaced by the actual operators,
spanning all the possible valid expressions of size k.

51

Generating Valid Trees

This procedure still returns some redundant expressions, and it is followed
by a simplification step.

• Tree reordering: [+, θ, x] and [+, x, θ] should be reordered
following a specified order.

• Simplifications: using Sympy they simplify the expressions to a
standard form.

• Parameters permutation: [+, θ0, ∗, θ1, x] is the same as
[+, θ1, ∗, θ0, x] .

• Reparametrization invariance: [exp, θ0] becomes [θ0].
• Parameters combination: [+, θ0, θ1] becomes [θ0].

52

Numerical parameter optimisation

Once we have a non-duplicated list of valid expressions of size up to k. The
algorithm fits each one of these expressions unsing a nonlinear optimization
method, maximizing a log-likelihood function.

They repeat the optimization Niter times to avoid reaching a bad local op-
tima. This repetition stops if Nconv of these iterations return a value within
0.5 of the best solution found so far.

53

Number of generated expressions

Figure 8: Bartlett, Deaglan J., Harry Desmond, and Pedro G. Ferreira.
“Exhaustive symbolic regression.” IEEE Transactions on Evolutionary
Computation (2023).

54

Minimum Description Length

After fitting all of these expressions, we need to choose one or rank them in
order of their estimated quality.

They propose the calculation of a Minimum Description Length (MDL) for
symbolic expressions. MDL states that the best expression is the one that
can best recover the dataset using the fewest units of information possible.

We will cover how to calculate MDL in a later lecture.

55

Sample Results

Figure 9: Bartlett, Deaglan J., Harry Desmond, and Pedro G. Ferreira.
“Exhaustive symbolic regression.” IEEE Transactions on Evolutionary
Computation (2023).

56

Sample Results

Figure 10: Bartlett, Deaglan J., Harry Desmond, and Pedro G. Ferreira.
“Exhaustive symbolic regression.” IEEE Transactions on Evolutionary
Computation (2023).

57

Exhaustive Symbolic Regression

• This approach efficiently enumerates all valid expressions of
complexity k

• It is capable of removing many redundant expressions from the
search space

• It selects the best model with a theoretically sound criteria

But

• It is infeasible for large values of k or high-dimensional datasets
• The simplification may not detect all equivalent expressions (we will
talk about that later)

• MDL may not pick the correct model (we will also talk about that
later)

58

End-to-end symbolic regression with
transformers

End-to-end symbolic regression with transformers

Kamienny et al. proposed an End-to-end symbolic regression with trans-
formers9 (E2ET). Prior work on neural network symbolic regression re-
quired a two step approach: they first predict the correct structure using
the Neural Network, and then it optimizes the parameters.

In this approach, a transformer neural network that, given the sample, it
returns the full expression with the parameter values.

9Kamienny, Pierre-Alexandre, et al. “End-to-end symbolic regression with transformers.”
Advances in Neural Information Processing Systems 35 (2022): 10269-10281.

59

End-to-end symbolic regression with transformers

The transformer network is trained on a large number of randomly generated
datasets with the known expression structure and optimal parameters.

60

Functions Generation

In the first step, they create a set of functions f : Rd → R to be used during
the pre-training process.

• Sample d U(1, dmax) as the input dimension for this function.
• Sample b U(d − 1, d + bmax) as the number of binary functions in
the tree.

• Sample b operators from op U{+, −, ×}.
• Build a random binary tree as described in10.
• Replace each leaf of the tree with a variable xi where i U(1, d).

10Guillaume Lample and François Charton. ‘Deep learning for symbolic mathematics’. In:
arXiv preprint arXiv:1912.01412 (2019).

61

Functions Generation

• Sample the number of unary operators u U(0, umax).
• Sample u operators from

uni U{inv, abs, sqr, sqrt, sin, cos, tan, atan, log, exp}.
• Insert these operators at random posiion in the tree.
• For every node representing a variable or an unary operator, apply a
random affine transformation axi + b or aunii + b, with random
a, b Daff .

Daff samples the sign fromU{−1, 1}, the mantissa fromU(0, 1), and the
exponent from U(−2, 2).

62

Inputs Generation

• Sample a number of clusters k U(1, kmax) and k weights
wi U(0, 1) that are normalized so that

∑
i wi = 1.

• For each cluster i, sample a centroid µi N (0, 1)d, a vector of
variances σi N (0, 1)d and a distribution shape disti U{N , U}.

• For each cluster i, sample ⌊wiN⌋ input points x disti(µi, σi) then
apply a random rotation sampled from a Haar distribution.

• Concatenate all points and subtract them from the mean and divide
by the standard deviation along each dimension.

63

Tokenization

The values of the expression are tokenized by first representing the numbers
as a base-10 floating point rounded to the fourth place and encoding as 3
tokens (sign, mantissa, exponent).

The expression is tokenized in pre-order traversal.

For example, cos(2.4242x) is tokenized as [cos, mul, +, 2424, E −3, x].

64

Network Topology

Figure 11: Kamienny, Pierre-Alexandre, et al. “End-to-end symbolic regression
with transformers.” Advances in Neural Information Processing Systems 35
(2022): 10269-10281.

65

Network Topology

The embedder receives as input N points (x, y) ∈ Rd+1 tokenized as al-
ready described (sign, mantissa, exponent) generating 3(d + 1) tokens for
each point. The inputs are padded up to dmax and they are fed to a 2-layer
fully-connected feed forward network with ReLU activations.

This network projects the input to a dimension demb.

66

Network Topology

The transformer network uses a sequence-to-sequence Transformer archite-
ture with 16 attention heads and an embedding dimension of 512 (total of
86M parameters).

This network is trained using cross-entropy loss with Adam optimizer using
104 examples as a validation set.

67

Refinement

After the network generates an expression, it further optimizes the parame-
ters with a nonlinear optimization method using the generated values as the
starting point.

68

End-to-end symbolic regression with transformers

Figure 12: Kamienny, Pierre-Alexandre, et al. “End-to-end symbolic regression
with transformers.” Advances in Neural Information Processing Systems 35
(2022): 10269-10281.

69

End-to-end symbolic regression with transformers

• It performs quite well when compared to state-of-the-art
• The inference time (expression generation) is as fast as FFX, but with
higher accuracy

• It returns low complexity expressions

But

• It is currently limited to dimensions d < 10
• Training cost can be expensive, but only need to be performed once

70

Further reading

• McConaghy, Trent. “FFX: Fast, scalable, deterministic symbolic
regression technology.” Genetic Programming Theory and Practice
IX (2011): 235-260

• Kammerer, Lukas, Gabriel Kronberger, and Michael Kommenda.
“Symbolic Regression with Fast Function Extraction and Nonlinear
Least Squares Optimization.” International Conference on Computer
Aided Systems Theory. Cham: Springer Nature Switzerland, 2022.

• de França, Fabrício Olivetti. “A greedy search tree heuristic for
symbolic regression.” Information Sciences 442 (2018): 18-32

• Kammerer, Lukas, et al. “Symbolic regression by exhaustive search:
Reducing the search space using syntactical constraints and efficient
semantic structure deduplication.” Genetic programming theory and
practice XVII (2020): 79-99.

71

Further reading

• Burlacu, B., Kammerer, L., Affenzeller, M., Kronberger, G.:
Hash-based Tree Similarity and Simplification in Genetic
Programming for Symbolic Regression. In: Computer Aided
Systems Theory, EUROCAST 2019 (2019)

• Bartlett, Deaglan J., Harry Desmond, and Pedro G. Ferreira.
“Exhaustive symbolic regression.” IEEE Transactions on
Evolutionary Computation (2023).

• Kamienny, Pierre-Alexandre, et al. “End-to-end symbolic regression
with transformers.” Advances in Neural Information Processing
Systems 35 (2022): 10269-10281.

72

Next lecture

• Symbolic Regression toolboxes

73

Acknowledgments

74

	FFX: FAST, SCALABLE, DETERMINISTIC SYMBOLIC REGRESSION TECHNOLOGY
	A Greedy Search Tree Heuristic for Symbolic Regression
	Symbolic Regression by Exhaustive Search
	Exhaustive Symbolic Regression
	End-to-end symbolic regression with transformers

