
Symbolic Regression Toolbox

Prof. Fabrício Olivetti de França

Federal University of ABC

05 Februrary, 2024

SRBench: A Living Benchmark for
Symbolic Regression

SRBench: A Living Benchmark for Symbolic Regression

For a long time, the SR community relied on toy problems and artificial
datasets to benchmark new approaches.

Often, new SR algorithms were compared solely to other SR algorithms.

This eventually created some myths:

• SR will return simple expressions but less accurate than opaque
models (both statements can be false :-))

• SR is too impractical and it takes a long time to return a model
• Using SR requires complicated installation procedures and
fine-tuning many hyperparameters

1

SRBench: A Living Benchmark for Symbolic Regression

SRBench1 was created with the objective of reporting the curren state of SR
when facing traditional regression algorithms.

The three main goals were:

• Stimulate cross-pollination between SR and ML communities
• Propose a large benchmark set with varying challenges
• Standardize the SR implementations with a common framework

1La Cava, William, et al. “Contemporary symbolic regression methods and their relative
performance.” arXiv preprint arXiv:2107.14351 (2021).

2

SRBench: A Living Benchmark for Symbolic Regression

The lack of cross-pollination is being addressed by keeping the benchmark
open-source2 and easily reproducible for anyone to verify the current results
or add new results.

2https://github.com/cavalab/srbench/releases/tag/v2.0
3

SRBench: A Living Benchmark for Symbolic Regression

The datasets were taken from the PMLB3 that contains 252 datasets for re-
gression comprehending synthetic and real-world data with different char-
acteristics.

3Romano, Joseph D., et al. “PMLB v1. 0: an open-source dataset collection for
benchmarking machine learning methods.” Bioinformatics 38.3 (2022): 878-880.

4

SRBench: A Living Benchmark for Symbolic Regression

The first set of benchmark are termed black-box regression problems and
were taken from different public sources:

• 122 datasets
• No known generator function, but…
• 62 are generated from the Friedman benchmark with varying degree
of noise and correlated features

• The Friedman sets have known generator function but cannot be
identified by the benchmark names.

more on that later

5

SRBench: A Living Benchmark for Symbolic Regression

The second set of benchmark are termed ground-truth regression prob-
lems and inclued data from two sources:

• Feynman Symbolic Regression dataset: 116 datasets
• ODE-Strogatz database: 14 datasets
• We know the generator function for all of them

6

SRBench: A Living Benchmark for Symbolic Regression

Figure 1: https://cavalab.org/srbench/datasets/

7

SRBench: A Living Benchmark for Symbolic Regression

To address the lack of an unified framework, the benchmark required the
implementation of a common API compatible with the well known scikit-
learn.

8

SRBench: A Living Benchmark for Symbolic Regression

Requirements for a competitor:

• scikit-learn compatible API
(https://scikit-learn.org/stable/developers/develop.html)[https://scikit-
learn.org/stable/developers/develop.html]

• Compatible with Python 3.7 or higher
• If your method uses a random seed, support a random_state
attribute

• The method should have the requirements and installation script at
the algorithms folder (upload through a pull request)

9

SRBench: A Living Benchmark for Symbolic Regression

The algorithm folder should have:

• metadata.yml describing the algorithm
• regressor.py a Python script with instructions on how to
benchmark the method

• LICENSE with the license information
• environment.yml a conda environment file with additional
requirements

• requirements.txt a pypi file with additional requirements
• install.sh a script that copies the source-code or package from an
external source (e.g., github repo) and installs the method.

10

SRBench: A Living Benchmark for Symbolic Regression

Example of install.sh:

remove directory if it exists
if [-d tir]; then

rm -rf tir
fi

git clone https://github.com/folivetti/tir.git
cd tir
export BOOTSTRAP_HASKELL_NONINTERACTIVE=1
curl --proto '=https' --tlsv1.2 -sSf

https://get-ghcup.haskell.org | bash
export PATH=$PATH:~/.ghcup/bin:~/.cabal/bin
cabal install --overwrite-policy=always

--installdir=./python
cd python
pip install .

11

SRBench: A Living Benchmark for Symbolic Regression

Example of regressor.py:

1 import sys
2 import os
3 import pyTIR as tir
4 from itertools import product
5 os.environ["LD_LIBRARY_PATH"] = os.environ["CONDA_PREFIX"] + "/lib"
6
7 hyper_params = [
8 {
9 'transfunctions' : ('Id,Tanh,Sin,Cos,Log,Exp,Sqrt',),
10 'ytransfunctions' : ('Id,Sqrt,Exp,Log,ATan,Tan,Tanh',),
11 'exponents' : ((-5,5),)
12 },
13 {
14 'transfunctions' : ('Id,Tanh,Sin,Cos,Log,Exp,Sqrt',),
15 'ytransfunctions' : ('Id,Sqrt,Exp,Log,ATan,Tan,Tanh',),
16 'exponents' : ((-2,2),)
17 },
18]

12

SRBench: A Living Benchmark for Symbolic Regression

The regressor.py file should contain a function model that returns a
sympy compatible model.

1 # Create the pipeline for the model
2 eval_kwargs = {'scale_x': False, 'scale_y': False}
3 est = tir.TIRRegressor(npop=1000, ngens=500, pc=0.3, pm=0.7,
4 exponents=(-5,5), error="R^2", alg="MOO")
5
6 def pre_train(est, X, y):
7 """Adjust settings based on data before training"""
8 if X.shape[0]*X.shape[1] <= 1000:
9 est.penalty = 0.01
10
11 def complexity(e):
12 return e.len
13
14 def model(e, X):
15 new_model = e.sympy.replace("^","**")
16 for i,f in reversed(list(enumerate(X.columns))):
17 new_model = new_model.replace(f'x{i}',f)
18 return new_model

13

SRBench: A Living Benchmark for Symbolic Regression

• You can install SRBench together with all supported algorithms
using conda or docker

• You can either run the entire benchmark, or just selected algorithm or
selected dataset

• You can also run for new datasets provided they are compatible with
PMLB format

See: https://cavalab.org/srbench/user-guide/

14

https://cavalab.org/srbench/user-guide/

SRBench: A Living Benchmark for Symbolic Regression

Evaluated methods:

• Age-Fitness Pareto Optimization (Schmidt and Lipson 2009)
• Age-Fitness Pareto Optimization with Co-evolved Fitness Predictors
(Schmidt and Lipson 2009)

• AIFeynman 2.0 (Udrescu et al. 2020)
• Bayesian Symbolic Regression (Jin et al. 2020)
• Deep Symbolic Regression (Petersen et al. 2020)
• Fast Function Extraction (McConaghy 2011)
• Feature Engineering Automation Tool (La Cava et al. 2017)

15

SRBench: A Living Benchmark for Symbolic Regression

Evaluated methods (cont.):

• epsilon-Lexicase Selection (La Cava et al. 2016)
• GP-based Gene-pool Optimal Mixing Evolutionary Algorithm
(Virgolin et al. 2017)

• gplearn (Stephens)
• Interaction-Transformation Evolutionary Algorithm (de Franca and
Aldeia, 2020)

• Multiple Regression GP (Arnaldo et al. 2014)
• Operon (Burlacu et al. 2020)
• Semantic Backpropagation GP (Virgolin et al. 2019)

16

SRBench: A Living Benchmark for Symbolic Regression

Figure 2: https://cavalab.org/srbench/results/
17

SRBench: A Living Benchmark for Symbolic Regression

Figure 3: https://cavalab.org/srbench/results/

18

SRBench: A Living Benchmark for Symbolic Regression

Figure 4: https://cavalab.org/srbench/results/

19

SRBench: A Living Benchmark for Symbolic Regression

Figure 5: https://cavalab.org/srbench/results/

20

SRBench: A Living Benchmark for Symbolic Regression

Figure 6: https://cavalab.org/srbench/results/

21

SRBench 1st Competition

A competition based on SRBench was hosted in GECCO 20224 and it was
divided into two tracks:

• synthetic track: composed of different challenges provided by
artificial datasets

• real-world track: real-world data where the models were judged by
an expert in the field

4https://cavalab.org/srbench/competition-2022/
22

SRBench 1st Competition

The synthetic track was composed of:

• rediscovery of the exact expression: where the exact expression of
the generating function should be returned.

• selection of relevant features: the models must use only relevant
features.

• escaping local optima: the models should not use imperfect
shortcuts of the true expression.

• extrapolation accuracy: the models should behave correctly outside
the training boundary.

• sensitivity to noise: the models should be robust against added noise.

23

SRBench 1st Competition

The real-world track was composed of time-series of case, hospitalization,
and death during the covid pandemic.

This dataset was processed to become a tabular data compatible with most
SR methods.

The main goal of this track was to find a model that was easy to interpret
with accurate predictions.

24

SRBench 1st Competition

We got some new participants on-board:

• Bingo
• E2ET
• PS-Tree
• QLattice
• TaylorGP
• EQL
• GeneticEngine
• Operon
• PySR
• uDSR
• GP_{ZGD}
• NSGA-DCGP

25

SRBench 1st Competition

• Varying degree of difficulties by introducing noise to the target
variable.

• Evaluated in two or three criteria: R^2 on a noiselees data, log of tree
length, property score.

• Property score depends on the task: feature absence score and exact
expression.

26

SRBench 1st Competition

• Recovery of true expression:

Figure 7: de Franca, F. O., et al. “Interpretable Symbolic Regression for Data
Science: Analysis of the 2022 Competition.” arXiv preprint arXiv:2304.01117
(2023).

27

SRBench 1st Competition

Figure 8: de Franca, F. O., et al. “Interpretable Symbolic Regression for Data
Science: Analysis of the 2022 Competition.” arXiv preprint arXiv:2304.01117
(2023).

28

SRBench 1st Competition

• Feature Selection:

Figure 9: de Franca, F. O., et al. “Interpretable Symbolic Regression for Data
Science: Analysis of the 2022 Competition.” arXiv preprint arXiv:2304.01117
(2023).

29

SRBench 1st Competition

• Local optima:

Figure 10: de Franca, F. O., et al. “Interpretable Symbolic Regression for Data
Science: Analysis of the 2022 Competition.” arXiv preprint arXiv:2304.01117
(2023).

30

SRBench 1st Competition

• Extrapolation:

Figure 11: de Franca, F. O., et al. “Interpretable Symbolic Regression for Data
Science: Analysis of the 2022 Competition.” arXiv preprint arXiv:2304.01117
(2023).

31

SRBench 1st Competition

• Extrapolation:

Figure 12: de Franca, F. O., et al. “Interpretable Symbolic Regression for Data
Science: Analysis of the 2022 Competition.” arXiv preprint arXiv:2304.01117
(2023).

32

SRBench 1st Competition

• Noise:

Figure 13: de Franca, F. O., et al. “Interpretable Symbolic Regression for Data
Science: Analysis of the 2022 Competition.” arXiv preprint arXiv:2304.01117
(2023).

33

SRBench 1st Competition

This competition brought to light many aspects of the current state-of-the-
art in SR5:

• No free lunch and the need for finetuning: as expected there is no
dominating method in this competition, each method favored one
aspect of regression analysis. Besides, for many reasons, some of
these methods may not have been correctly fine-tuned for the
competition.

• Simplicity measure is too simple: using only the length hides some
undesired constructs such as the chaining of nonlinear functions.

5de Franca, F. O., et al. “Interpretable Symbolic Regression for Data Science: Analysis of
the 2022 Competition.” arXiv preprint arXiv:2304.01117 (2023).

34

SRBench 1st Competition

This competition brought to light many aspects of the current state-of-the-
art in SR6:

• Few repetitions x computational budget: having a limited
computational budget allowed for only a few repetitions which can
increase the uncertainties of the results.

• Interpretable: judging whether a model is interpretable or not is too
subjective and error prone.

6de Franca, F. O., et al. “Interpretable Symbolic Regression for Data Science: Analysis of
the 2022 Competition.” arXiv preprint arXiv:2304.01117 (2023).

35

SRBench 1st Competition

This competition brought to light many aspects of the current state-of-the-
art in SR7:

• Most implementations lack a post-analysis tool that provides: a set of
alternative models, algebraic simplification of the expressions,
uncertainty measures, visual inspection tools, general customizations.

7de Franca, F. O., et al. “Interpretable Symbolic Regression for Data Science: Analysis of
the 2022 Competition.” arXiv preprint arXiv:2304.01117 (2023).

36

SRBench 2nd Competition

A second competition was hosted in GECCO 20238 where the competitors
could play with a training data for a period of time and submit a single model
to be evaluated.

8https://cavalab.org/srbench/competition-2023/
37

SRBench 2nd Competition

• SRBench Competition 2023
• https://cavalab.org/srbench/competition-
2023/

• Two tracks:
• Performance
• Interpretability

38

SRBench 2nd Competition

• Github Classroom: participants can form teams and play with the
datasets until the deadline

• Enjoying more freedom to perform regression analysis, can the
participants succeed?

• More about the use of the SR tools rather than comparing algorithms

39

SRBench 2nd Competition

• 3 datasets:
• Shubert function
• NASA dataset (black-box)
• Vincent function

f1 =
n∏

i=1

∑
j=1

3j ∗ cos((j + 1) ∗ xi + j)

f2 =??

f3 = 1
8

8∑
i=1

10 log(xi)

40

SRBench 2nd Competition (NASA dataset)

• Based on 600 3-D simulations of cracks in
flat plates under loading

• Goal: to predict the growth of cracks in
thin metal layers

• A closed form expression has a profound
impact on material characterization,
structural design, and failure analysis at
NASA and beyond

41

SRBench 2nd Competition

• We added a little spice to these datasets:
• Gaussian noise
• Noisy and irrelevant features
• Colinear features

42

SRBench 2nd Competition

tot-score = 6∑3
i=1

1
acci

+ 1
simpli

acci = N − k + 1
simpli = N − k + 1

where N is the number of participants and k is the rank w.r.t. R2 or expres-
sion length.

43

SRBench 2nd Competition

• Montreal Bike Lane: predict the
number of bikes crossing a bike lane in
Montreal

• contains additional info about the
weather of any given day

• Participants must explore the dataset,
apply one or more SR algorithms, and
extract interesting findings

44

SRBench 2nd Competition

• Level of details in the pipeline
• Readability of the model
• Interestingness of the pre and post analysis process
• Analysis of interpretation (with special points for analysis that can
only be made using SR models)

• Average of organizers grading.

45

SRBench 2nd Competition

Team Participants method score rank src

pksm Parshin Shojaee Kazem Meidan TPSR 6.307885 1 N
newton-sr Nicolas Lassabe Paul Gersberg NewTonSR++ 6.224784 2 Y
sarma Aleksandar Kartelj Marko Djukanovic RILS 6.136364 3 Y
player Lianjie Zhong Jinghui Zhong Dongjunlan

Nikola Gligorovski
PFGP 5.448649 4 Y

stackgp Nathan Haut stackgp 5.130641 5 Y
university-of-
wellington

Hengzhe Zhang Qi Chen Bing Xue Mengjie
Zhang

SR-Forest 4.251969 6 Y

wonderful-time Hai Minh Nguyen SymMFEA 3.440273 7 Y
his_jsr Gurushant Gurushant Jatinkumar Nakrani

Rajni Maandi
LR + gplearn 3.43949 8 Y

tontakt Andrzej Odrzywołek enumeration, PySR,
rational poly

2.855524 9 Y

amir Mohammad Amirul Islam PySR 1.788926 10 Y

46

https://github.com/ufabc-bcc/srbench-competition-2023-track-1-pksm
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-newton-sr
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-sarma
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-player
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-stackgp
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-victoria-university-of-wellington
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-victoria-university-of-wellington
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-wonderful-time
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-his_jsr_2023
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-tontakt
https://github.com/ufabc-bcc/srbench-competition-2023-track-1-amir

SRBench 2nd Competition

Team Participants method score rank src

university-of-wellington Hengzhe Zhang Qi Chen Bing Xue Mengjie Zhang SR-Forest 3.25 1 Y
player Lianjie Zhong Jinghui Zhong Dongjunlan Nikola

Gligorovski
PFGP 2.83 2 Y

his_jsr Gurushant Gurushant Jatinkumar Nakrani Rajni Maandi gplearn 2.25 3 Y
c-bio-ufpr Adriel Macena Falcão Martins Aurora Trinidad Ramirez

Pozo
PySR 1.75 4 Y

47

https://github.com/ufabc-bcc/srbench-competition-2023-track-2-victoria-university-of-wellington
https://github.com/ufabc-bcc/srbench-competition-2023-track-2-player
https://github.com/ufabc-bcc/srbench-competition-2023-track-2-his_jsr_2023
https://github.com/ufabc-bcc/srbench-competition-2023-track-2-c-bio-ufpr

SRBench 2nd Competition

• Additional freedom stimulated creativity and hybrid approaches
• Evaluation of SR under a practical point of view
• Not to be used to compare average performance of SR algorithms
• Making new datasets is still hard
• SR can generate accurate and interpretable models, this should be
explored more!

48

srtree-opt

srtree-opt

srtree-opt9 is a command line tool to parse and post-process symbolic re-
gression models.

It was created as a support library for ITEA and TIR algorithms and changed
into a CLI tool for convenience.

It currently support expressions generated by: TIR, HeuristicLab, Operon,
BINGO, GP-GOMEA, PySR, SBP, and EPLEX.

9https://github.com/folivetti/srtree-opt
49

srtree-opt

It supports two modes: csv and detailed report.

• CSV report: stores the main properties and different quality measures
of the parsed expression.

• Detailed report: shows the same information as the CSV report but as
a prettyfied format and it shows the confidence intervals for the
parameters and predictions.

It also supports to refit the parameters and simplification of the expressions
using equality saturation.

50

srtree-opt

The CSV report shows:

• Expression in a standard format
• Number of nodes of the expression
• Number of parameters
• Parameters values
• Iterations to converge to local optima (if asked to optimize)

51

srtree-opt

Error and accuracy measures for the training, validation, test sets and for
the original and refitted expression:

• Sum of Squared Error (SSE)
• Bayesian Information Criteria
• Akaike Information Criteria
• Minimum Description Length (and variations)
• Evidence
• Negative Log-Likelihood
• Log-Functional
• Log-Parameters
• Fisher Information Matrix

52

srtree-opt

In report mode it also shows the confidence interval for the parameters and
predictions using either Laplace approximation or Profile Likelihood

53

srtree-opt

Available options:

-f,--from ['tir'|'hl'|'operon'|'bingo'|'gomea'|'pysr'|'sbp'|'eplex']
Input expression format

-i,--input INPUT-FILE Input file containing expressions.
Empty string gets expression from stdin.

-o,--output OUTPUT-FILE Output file to store the stats. Empty
string prints expressions to stdout.

-d,--dataset DATASET-FILENAME
Filename of the dataset used for optimizing
the parameters.
Empty string omits stats that make use of
the training data.

54

srtree-opt

Available options (cont.):

--test TEST Filename of the test dataset.
--hasheader Uses the first row of the csv

file as header.
--simplify Apply basic simplification.

55

srtree-opt

Available options (cont.):

--niter NITER Number of iterations for the
optimization algorithm.
Set 0 for no optimization.

--distribution ['gaussian'|'bernoulli'|'poisson']
Minimize negative log-likelihood
following one of the
avaliable distributions.
The default will use least
squares to optimize the model.

--sErr Serr Estimated standard error of the data.
Defaults to model MSE.

--restart If set, it samples the initial values
of the parameters using a Gaussian
distribution N(0, 1),
otherwise it uses the original values of the
expression.

--seed SEED Random seed to parameter initialization.

56

srtree-opt

Available options (cont.):

--report If set, reports the analysis in
a user-friendly format instead of csv.
It will also include
confidence interval for the parameters and
predictions

--profile If set, it will use profile likelihood
to calculate CIs.

--alpha ALPHA Significance level for confidence intervals.
(default: 5.0e-2)

57

srtree-opt

This tool will automatically handle gzipped datasets if the last extension is
.gz. It will auto-detected the delimiter.

The filename can include additional information in the format:

filename.csv:start:end:target:vars

where start and end corresponds to the range of rows that should be used
for training, the other rows will be used for validation.

target is the column index or name of the target variable, and vars is a
comma separated list of column indices or variable names to use as

predictors.

58

srtree-opt

If our dataset data.csv has the header rowwith the following information:

var1,var2,var3,target1,target2

we can load it by passing data.csv, where it will use every row for
training and every column as a predictor, except for the last one that will

be the target.

59

srtree-opt

If we pass data.csv:0:10:target1:var1,var3,var2, it will use the
first 10 rows for training, the remainder for validation, the taget variable will
be the column namedtarget1, and x0,x1,x2will bevar1,var3,var2,
respectivelly.

We can also use index values such as data.csv:0:10:3:0,2,1 and we
can mix both names and indices. The values can be omitted to use the

defaults.

60

srtree-opt

Example usage:

srtree-opt -f operon -i expression_file
-d data.csv::99:target_noise --sErr 7.2659 --hasheader
--niter 100 --distribution gaussian
--restart --simplify

61

srtree-opt

Example report output:

=================== EXPR 0 ==================
(Sqrt((Abs((x3 + 0.6699816344531162)) / x1))

- (393.7006500300653 / (x4 + (9.51898304028687 * x5))))

---------General stats:---------

Number of nodes: 15
Number of params: 3
theta = [0.6699816344531162,393.7006500300653,9.51898304028687]

----------Performance:--------

SSE (train.): 5258.3653
SSE (val.): 0.0
SSE (test): 0.0
NegLogLiklihood (train.): 1187.4301
NegLogLiklihood (val.): 0.0
NegLogLiklihood (test): 0.0

62

srtree-opt

Example report output (cont.):

------Selection criteria:-----

BIC: 2397.8578
AIC: 2382.8603
MDL: 1229.8937
MDL (freq.): 1229.663
Functional complexity: 35.9684
Parameter complexity: 6.4951

---------Uncertainties:----------

Correlation of parameters:
3x3
1.00 0.17 -0.04
0.17 1.00 0.97

-0.04 0.97 1.00

Std. Err.: [0.2737,137.6956,3.724]

63

srtree-opt

Example report output (cont.):

Confidence intervals:

lower <= val <= upper
0.1315 <= 0.67 <= 1.2085
122.768 <= 393.7007 <= 664.6333
2.1916 <= 9.519 <= 16.8464

Confidence intervals (predictions training):

lower <= val <= upper
2.9795 <= 3.0478 <= 3.1161
2.3457 <= 2.422 <= 2.4983
4.0335 <= 4.151 <= 4.2684
2.9836 <= 3.0796 <= 3.1755
2.5375 <= 2.6771 <= 2.8167

64

SR Implementations Highlights

PyOperon

Operon10 is a modern C++ implementation of a GP algorithm for SR cre-
ated with the objective of being performant and offering a wide range of
customizations.

It uses vectorized evaluations, a cutting edge library for linear algebra, and
concurrency to achive high performance and be one of the fastest SR imple-
mentations.

10Burlacu, Bogdan, Gabriel Kronberger, and Michael Kommenda. “Operon C++ an
efficient genetic programming framework for symbolic regression.” Proceedings of the
2020 Genetic and Evolutionary Computation Conference Companion. 2020.

65

PyOperon

PyOperon11 is a Python binding for the C++ implementation offering easy-
to-install and easy-to-use access to Operon.

This implementation offer a scikit-learn compatible library, for easy of use,
and a direct binding to the C++ implementation, offering a more customized
experience.

11Burlacu, Bogdan, Gabriel Kronberger, and Michael Kommenda. “Operon C++ an
efficient genetic programming framework for symbolic regression.” Proceedings of the
2020 Genetic and Evolutionary Computation Conference Companion. 2020.

66

PyOperon - scikit-learn interface

from pyoperon.sklearn import SymbolicRegressor
reg = SymbolicRegressor(

allowed_symbols= "add,sub,mul,div,constant,variable",
brood_size= 10,
comparison_factor= 0,
crossover_internal_probability= 0.9,
crossover_probability= 1.0,
epsilon= 1e-05,
female_selector= "tournament",
generations= 1000,
pool_size= 1000,
population_size= 1000,
random_state= None,
reinserter= "keep-best",
time_limit= 900,
tournament_size= 3,
uncertainty= [sErr]
)

reg.fit(x, y)
reg.score(x,y)
res = [(s['objective_values'], s['tree'],

s['minimum_description_length']) for s in reg.pareto_front_]
for obj, expr, mdl in res:

print(obj, mdl, reg.get_model_string(expr, 16))

67

PyOperon - scikit-learn interface

Main arguments:

• allowed_symbols: a comma separated list of operators
(add,sub,mul,div,constant,variable, aq, pow, exp, log, sin, cos, tan,
tanh, sqrt, cbrt, square, dyn)

• crossover_probability: probability of applying crossover
• mutation_probability: probability of applying mutation
• mutation: prob. distribution of each mutation (onepoint,
discretepoint, changevar, changefunc, insertsubtree, replacesubtree,
removesubtree)

• offspring_generator: basic, offspring, brood, polygenic
• reinserter: keepbest, replaceworst
• objectives: a list of objectives (r2,c2,mse,rmse,mae)
• optimizer: lm, lbgs, sgd

68

PyOperon - scikit-learn interface

Main arguments (cont.):

• optimizer_likelihood: gaussian, poisson
• initialization_method: grow, ptc, btc
• population_size: an integer of the population size
• generations: the number of generations
• max_evaluations: maximum number of evaluations
• model_selection_criterion: mdl, bic, aik

69

PyOperon - binding

(from https://github.com/heal-research/pyoperon/blob/main/example/operon-
bindings.py):

import random, time, sys, os, json
import numpy as np
import pandas as pd
from scipy import stats

import pyoperon as Operon
from pmlb import fetch_data

get some training data - see https://epistasislab.github.io/pmlb/
D = fetch_data('1027_ESL', return_X_y=False, local_cache_dir='./datasets').to_numpy()

initialize a dataset from a numpy array
ds = Operon.Dataset(D)

define the training and test ranges
training_range = Operon.Range(0, ds.Rows // 2)
test_range = Operon.Range(ds.Rows // 2, ds.Rows)

70

PyOperon - binding

define the regression target
target = ds.Variables[-1] # take the last column in the dataset as the target

take all other variables as inputs
inputs = [h for h in ds.VariableHashes if h != target.Hash]

initialize a rng
rng = Operon.RomuTrio(random.randint(1, 1000000))

initialize a problem object which encapsulates the data,input,target and training/test ranges
problem = Operon.Problem(ds, training_range, test_range)
problem.Target = target
problem.InputHashes = inputs

71

PyOperon - binding

initialize an algorithm configuration
config = Operon.GeneticAlgorithmConfig(generations=1000,

max_evaluations=1000000, local_iterations=0,
population_size=1000, pool_size=1000
p_crossover=1.0, p_mutation=0.25
epsilon=1e-5, seed=1, time_limit=86400)

selector = Operon.TournamentSelector(objective_index=0)
selector.TournamentSize = 5

problem.ConfigurePrimitiveSet(Operon.PrimitiveSet.Arithmetic
| Operon.NodeType.Exp | Operon.NodeType.Log |
Operon.NodeType.Sin | Operon.NodeType.Cos)

pset = problem.PrimitiveSet

minL, maxL = 1, 50
maxD = 10

btc = Operon.BalancedTreeCreator(pset,
problem.InputHashes, bias=0.0)

tree_initializer = Operon.UniformLengthTreeInitializer(btc)
tree_initializer.ParameterizeDistribution(minL, maxL)
tree_initializer.MaxDepth = maxD

72

PyOperon - binding

coeff_initializer = Operon.NormalCoefficientInitializer()
coeff_initializer.ParameterizeDistribution(0, 1)

mut_onepoint = Operon.NormalOnePointMutation()
mut_changeVar = Operon.ChangeVariableMutation(inputs)
mut_changeFunc = Operon.ChangeFunctionMutation(pset)
mut_replace = Operon.ReplaceSubtreeMutation(btc,

coeff_initializer, maxD, maxL)

mutation = Operon.MultiMutation()
mutation.Add(mut_onepoint, 1)
mutation.Add(mut_changeVar, 1)
mutation.Add(mut_changeFunc, 1)
mutation.Add(mut_replace, 1)

define crossover
crossover_internal_probability = 0.9
crossover = Operon.SubtreeCrossover(crossover_internal_probability,

maxD, maxL)

73

PyOperon - binding

dtable = Operon.DispatchTable()
error_metric = Operon.R2()
evaluator = Operon.Evaluator(problem, dtable, error_metric, True)
evaluator.Budget = 1000 * 1000

optimizer = Operon.LMOptimizer(dtable, problem, max_iter=10)

generator = Operon.BasicOffspringGenerator(evaluator,
crossover, mutation, selector, selector)

reinserter = Operon.ReplaceWorstReinserter(objective_index=0)
gp = Operon.GeneticProgrammingAlgorithm(problem,

config, tree_initializer, coeff_initializer,
generator, reinserter)

gen = 0
max_ticks = 50
interval = 1 if config.Generations < max_ticks

else int(np.round(config.Generations / max_ticks, 0))
t0 = time.time()

74

PyOperon - binding

def report():
global gen
best = gp.BestModel
bestfit = best.GetFitness(0)
sys.stdout.write('\r')
cursor = int(np.round(gen / config.Generations * max_ticks))
for i in range(cursor):

sys.stdout.write('\u2588')
sys.stdout.write(' ' * (max_ticks-cursor))
sys.stdout.write(f'{100 * gen/config.Generations:.1f}%,

generation {gen}/{config.Generations},
train quality: {-bestfit:.6f},
elapsed: {time.time()-t0:.2f}s')

sys.stdout.flush()
gen += 1

run the algorithm
gp.Run(rng, report, threads=0)

get the best solution and print it
best = gp.BestModel
model_string = Operon.InfixFormatter.Format(best.Genotype, ds, 6)
print(f'\n{model_string}')

75

PySR

PySR12 is a python binding for a high-performance SR implementation in
Julia.

The main focus of this implementation is to enable SR as an automatic tool
to discover science laws from data.

12https://github.com/MilesCranmer/PySR
76

PySR

As such, this SR tool was engineered to be high-performant, customizable,
and easy to use.

It is multi-objective by default and it returns a selection of expressions with
the tradeoff of accuracy and simplicity.

77

PySR

This implementation differs from traditional GP by introducing some nov-
elties13:

• It applies a simulated annealing strategy to accept or reject a mutated
solution, alternating between high and low temperature (to promote
either a local search or diversity).

• It envelopes the evolution into a evolve-simplify-optimize loop,
where the population is evolved (through mutation and crossover) for
a number of iterations and then they go through algebraic
simplification (to remove some redundancies) and nonlinear
optimization of the parameters.

• It introduces an adaptive parsimony control that enables the
population to keep individuals of different complexity levels.

13Cranmer, Miles. “Interpretable machine learning for science with PySR and
SymbolicRegression. jl.” arXiv preprint arXiv:2305.01582 (2023).

78

PySR

Besides that, it provdes several additional features to help mitigate some
common problems:

• Denoising the dataset using a Gaussian process to predict denoised
target values.

• Specifying weights for each data point.
• Custom loss function: it is possible to pass a python or julia function
to be used as a loss function.

• Custom operators: it is also possible to pass custom operators.
• Feature selection by applying a gradient boosting tree to select the n

most important features
• Operators constraints: we can specify functional constraints such as
maximum size of the expression, maximum deph, maximum size
following a certain operator, maximum nestedness of operators.

79

PySR

from pysr import PySRRegressor

model = PySRRegressor(
niterations=40, # < Increase me for better results
binary_operators=["+", "*"],
unary_operators=[

"cos",
"exp",
"sin",
"inv(x) = 1/x",
^ Custom operator (julia syntax)

],
extra_sympy_mappings={"inv": lambda x: 1 / x},
^ Define operator for SymPy as well
loss="loss(prediction,target) = (prediction - target)^2",
^ Custom loss function (julia syntax)

)

80

PySR

Main arguments:

• model_selection: how to pick the best model (accuracy, best,
score)

• binary_operators: a list of binary operators (see the operators
page)

• unary_operators: a list of unary operators
• niterations: number of iterations
• populations: number of populations for island model
• population_size: size of each populaton
• max_evals: maximum evaluation count
• maxsize: maximum complexity of an equation

81

https://astroautomata.com/PySR/operators/
https://astroautomata.com/PySR/operators/

PySR

Main arguments (cont.):

• constraints: enforces maxsize for the children of operators (pow
: (-1, 1) leave the left child unconstrained and allows only
subtrees of size 1 for the right child).

• nested_constraints: nested constraints ({"sin": {"cos":
0}} means that cosine cannot be applied after sine).

• loss: the loss function (LPDistLoss{P}(), L1DistLoss(),
L2DistLoss() (mean square), LogitDistLoss(),
HuberLoss(d), L1EpsilonInsLoss(�),
L2EpsilonInsLoss(�), PeriodicLoss(c),
QuantileLoss(�), ZeroOneLoss(), PerceptronLoss(),
L1HingeLoss(), SmoothedL1HingeLoss(�),
ModifiedHuberLoss(), L2MarginLoss(), ExpLoss(),
SigmoidLoss(), DWDMarginLoss(q))

82

TIR

Transformation-Interaction-Rational SR14 extends the IT representation to
support a rational of two IT expressions:

fT IR(x, wp, wq) = g

 p(x, wp)

1 + q(x, wq)

invertible function

IT expressions

fIT (x, w) = w0 +
m∑

j=1
wj · (fj ◦ rj)(x)

linear coefficient

transformation function interaction function

rj(x) =
d∏

i=1
x

kij

i

strength of interaction
14de França, Fabrício Olivetti. “Transformation-interaction-rational representation for
symbolic regression.” Proceedings of the Genetic and Evolutionary Computation
Conference. 2022. 83

TIR

The main implementation is written in Haskell15 with support to a Python
wrapper following the scikit-learn API.

Besides the Python wrapper it has a command line interface that requires a
configuration file that specifies the main options of the algorithm

15https://github.com/folivetti/tir
84

TIR

The main configuration file is split into sections regarding each aspect of
the algorithm:

[IO]
train = path and name of the training set
test = path and name of the test set
log = PartialLog "path and name of the output file"

[Mutation]
krange = (-3, 3)
transfunctions = [Id, Sin, Cos, Tanh, SqrtAbs, Log, Exp]
ytransfunctions = [Id, Exp, Sin]

85

TIR

The algorithm option specifies the different supported variants: GPTIR, SC-
TIR, MOO, FS.

[Algorithm]
npop = 1000
ngens = 500
algorithm = GPTIR
measures = ["RMSE", "NMSE", "MAE", "R^2"]
task = Regression
probmut = 0.8
probcx = 0.8
seed = Nothing

86

TIR

• GPTIR: vanilla genetic programming.
• SCTIR: genetic programming with shape-constraints
• MOO16: Multi-objective with the first objective being the first
measure in the list of measures and the second is the model size.

• FS17: Finess sharing version that returns a set of expressions that
behave similarly in the training data but it behaves differently outside
the predictors domain range.

16de França, Fabrício Olivetti. “Alleviating overfitting in
transformation-interaction-rational symbolic regression with multi-objective optimization.”
Genetic Programming and Evolvable Machines 24.2 (2023): 13.
17de França, Fabrício Olivetti. “Transformation-Interaction-Rational representation for
Symbolic Regression: a detailed analysis of SRBench results.” ACM Transactions on
Evolutionary Learning (2023).

87

TIR

This implementation also supports shape-constraints that constrains the gen-
erated model to specific properties.

The penalty argument can be NoPenalty, Len Double, or Shape
Double to penalize the length of the model or the shape property, respec-
tivelly. Double is a floating point value representing the penalization
factor.

[Constraints]
penalty = NoPenalty
shapes = []
domains = []
evaluator = Nothing

88

TIR

The argument shapes is a list of shape constraints involving a variable
(specified by an Int index) and the range of the constraint:

data Shape = Range (Double, Double)
-- ^ f(x) \in [a,b]

| DiffRng Int (Double, Double)
-- ^ d f(x) / dx \in [a,b]

| NonIncreasing Int
-- ^ d f(x) / dx \in [-inf,0]

| NonDecreasing Int
-- ^ d f(x) / dx \in [0,inf]

| PartialNonIncreasing Int (Double, Double)
-- ^ d f(x) / dx \in [-inf,0],a <= x <= b

| PartialNonDecreasing Int (Double, Double)
-- ^ d f(x) / dx \in [0,inf],a <= x <= b

| Inflection Int Int
-- ^ d^2 f(x)/dx^2 == 0

| Convex Int Int
-- ^ d^2 f(x)/dx^2 \in (0,Infinity)

| Concave Int Int
-- ^ d^2 f(x)/dx^2 \in (-Infinitiy,0)

89

TIR

The argument domains is just a list of tuples specifying the domain range
of each variable that must be evaluated.

The final argument, evalutor, specifies how to evaluate the constraints:

data Evaluator = InnerInterval
| OuterInterval
| Kaucher
| Sampling Int
| Hybrid Double
| Bisection Int

90

HeuristicLab

HerusiticLab18 is a framework supporting a large variaty of heuristics and
evolutionary algorithms for different problems.

It has an intuitive Graphical User Interface and can also be used program-
maticaly as a C# library.

18https://dev.heuristiclab.com/
91

HeuristicLab

Specific to Genetic Programming it supports:

• Artificial Ant
• Lawn Mower
• Even Parity
• Multiplexer
• Robocode
• Trading
• Symbolic Classification
• Symbolic Regression
• Koza-style Symbolic Regression
• Symbolic Time-Series Prognosis
• Grammatical Evolution

92

HeuristicLab

Another outstanding fetaure is the post-processing plots and reports that
helps the practitioner to debug the model and have some insights about the
data.

Figure 14: https://dev.heuristiclab.com/trac.fcgi/wiki/Features
93

HeuristicLab

A brief usage introduction: https://dev.heuristiclab.com/trac.fcgi/
export/HEAD/misc/documentation/Tutorials/Algorithm%20and%
20Experiment%20Design%20with%20HeuristicLab.pdf

94

https://dev.heuristiclab.com/trac.fcgi/export/HEAD/misc/documentation/Tutorials/Algorithm%20and%20Experiment%20Design%20with%20HeuristicLab.pdf
https://dev.heuristiclab.com/trac.fcgi/export/HEAD/misc/documentation/Tutorials/Algorithm%20and%20Experiment%20Design%20with%20HeuristicLab.pdf
https://dev.heuristiclab.com/trac.fcgi/export/HEAD/misc/documentation/Tutorials/Algorithm%20and%20Experiment%20Design%20with%20HeuristicLab.pdf

Next lecture

• Likelihood Functions

95

Acknowledgments

96

	SRBench: A Living Benchmark for Symbolic Regression
	srtree-opt
	SR Implementations Highlights

