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Likelihood Functions



Likelihood Function

Let us recall how we describe the data distribution using a mass function,
for discrete events, or density function, for continuous:

∑
x

f(x) = 1

P (a ≤ x ≤ b) =
∫ b

a
f(x)dx
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Likelihood Function

If the shape of the distribution depends on parameters we write f(x; θ) to
say the probability distribution of a random variable x when parameterized
by θ.
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Likelihood Function

The likelihood function is defined as L(θ; x) also written as L(θ | x) and
has the same form as f(x; θ).

The main difference is that f(x; θ) is a function of x given a fixed θ and
L(θ; x) is a function of θ with a fixed x.
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Interpretation

The likelihood function should be interpreted as the probability
of observing x if the true value of the parameter is θ.

This is not the probability of θ given x!!!
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Likelihood Function

Assuming coin flipping events1 where the probability distribution is param-
eterized by the probability of observing heads (pH ).

Assuming a fair coin, we have pH = 0.5 and the probability of observing
two heads is:

P (HH; pH = 0.5) = 0.25

1https://en.m.wikipedia.org/wiki/Likelihood_function#Example
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Likelihood Function

Now, the likelihood of pH = 0.5 is given by:

L(pH = 0.5; HH) = 0.25

That is the probability of observing HH if pH = 0.5.
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Likelihood Function

Let us see a graphical representation of the likelihood function.
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Likelihood Function

Similarly for HHT we have that the likelihood is p2
h(1 − pH).
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Likelihood Function

For a continuous distribution we have that the probability density funcion
describes the probability that a random variable x is within a range of value.

If we define this range as [x(i), x(i) + h] for h > 0, then the likelihood
functions is

L(θ; x ∈ [x(i), x(i) + h])
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Likelihood Function

Since we want to find θ that maximizes the likelihood, we have:

argmax
θ

L(θ; x ∈ [x(i), x(i) + h]) = argmax
θ

1
h

L(θ; x ∈ [x(i), x(i) + h])

by multiplying the likelihood function with a positive constant does not
change the optima.
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Likelihood Function

Since the probability density function and the likelihood has the same form,
it follows:

argmax
θ

1
h

L(θ; x ∈ [x(i), x(i) + h]) = argmax
θ

1
h

P (x ∈ [x(i), x(i) + h]; θ)

= argmax
θ

1
h

∫ x(i)+h

x(i)
f(x; θ)dx
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Likelihood Function

Taking the limit of h → 0+ we can apply the fundamental theorem of
calculus.

lim
h→0+

1
h

∫ x(i)+h

x(i)
f(x; θ)dx = f(x; θ)
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Likelihood Function

Which leads us to

argmax
θ

L(θ; x) = argmax
θ

f(x; θ)

13



Regularity conditions

The likelihood function is assumed to obey certain conditions called regu-
larity conditions.

These conditions ensure that, asymptotically, the likelihood can be approx-
imatted by the likelihood of a normal distribution.

This will help us to extend the calculation of confidence intervals for differ-
ent distributions.
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Regularity conditions

The three regularity conditions are:

1. The random variable is independently and identically distributed (we
already assume that for our application).

2. There exists an open set Θ∗ ⊂ Θ ⊂ RP containing θ̂.
3. For all x, f(x; θ) is continuously differentiable w.r.t. θ up to third

order derivative on Θ∗.
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Regularity conditions

An open set generalizes open intervals.

For example, the points (x, y) such that x2 + y2 < r2 represents an open
set with the points x2 + y2 = r2 the boundary set and the union of both
sets, a closed set.
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Regularity conditions

There are some conditions necessary to ensure the third condition, but one
that we will use is the fact that the Fisher Information matrix is positive
definite.
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Fisher Information

Fisher Information measures how much information a random
variable carries about the model parameters.
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Fisher Information

The main intuition about the Fisher Information is that it measures the vari-
ance (second moment) of the probability distribution f(x; θ) w.r.t. θ.

If a change in θ propagates into a significant change in f , it means that the
current data is enough to determine a good estimate of the true θ. Otherwise,
if f is flat, it requires a large amount of data to find the true parameter.

The flatter the surface, the more data is required up until the whole popula-
tion.
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Fisher Information

The score is defined as the partial derivatives of logf w.r.t. θ. Assuming
the regularity conditions, if θ is the true parameter, the first moment is 0:

E

[
∂

∂θ
logf(x; θ)

∣∣∣
θ=θ̂

]
=
∫

∂

∂θ
logf(x; θ)dx

=
∫

∂

∂θ
f(x; θ)f(x; θ)

f(x; θ)
dx

=
∫

∂

∂θ
f(x; θ)dx

= ∂

∂θ

∫
f(x; θ)dx

= ∂

∂θ
1

= 0
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Fisher Information

The Fisher Information is the second moment (variance) of the score:

F(θ) = E

[(
∂

∂θ
log f(x; θ)

)2∣∣∣
θ=θ̂

]
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Fisher Information

By the regularity condition, f(x; θ) is twice differentiable, and we have
that:

∂2

∂θ2 log f(x; θ) =
∂2

∂θ2 f(x; θ)
f(x; θ)

−
(

∂
∂θ f(x; θ)
f(x; θ)

)2

=
∂2

∂θ2 f(x; θ)
f(x; θ)

−
(

∂

∂θ
log f(x; θ)

)2
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Fisher Information

And the expected value is:

E

[
∂2

∂θ2 log f(x; θ)
]

= E

[
∂2

∂θ2 f(x; θ)
f(x; θ)

−
(

∂

∂θ
log f(x; θ)

)2
]

= E

[
∂2

∂θ2 f(x; θ)
f(x; θ)

]
− E

[(
∂

∂θ
log f(x; θ)

)2
]

= −E

[(
∂

∂θ
log f(x; θ)

)2
]

= −F(θ)

F(θ) = −E

[
∂2

∂θ2 log f(x; θ)
]

So the Fisher information can be calculated as the expected value of the
second-order partial derivatives of the logarithm of p(x; θ). 23



Fisher Information

The fact that the Fisher Information is positive definite means that the neg-
ative log-likelihood has a minimum value (is concave up) within Θ∗.
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Negative Log-Likelihood

It is common to frame the optimization problem to fit the model to the data
as the minimization of the negative log-liklihood (nll).
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Fisher Information

Let us exemplify the Fisher Information for a Bernoulli distribution. The
likelihood of this distribution is given by:

L(θ; x) = θx(1 − θ)1−x

wih x ∈ 0, 1.
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Fisher Information

The Fisher Information is then:

F(θ) = −E

[
∂2

∂θ2 log L(θ; x)
]

= −E

[
∂2

∂θ2 log(θx(1 − θ)1−x)
]

= −E

[
∂2

∂θ2 (x log θ + (1 − x) log(1 − θ))
]

= E

[
x

θ2 + 1 − x

(1 − θ)2

]
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Fisher Information

Since in Bernoulli distribuion E[x] = θ

F(θ) = θ

θ2 + 1 − θ

(1 − θ)2

= 1
θ(1 − θ)

For a fair coin where θ = 0.5, the Fisher Information is 4.
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Fisher Information

The Fisher Information is the reciprocal of the variance!
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Fisher Information

As θ → 0− or θ → 1+, the Fisher Information grows toward infinite. This
means that just a few data points are enough to find the correct value of θ.
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Fisher Information Matrix

When we have P parameters, the Fisher Information is a P × P matrix
called Fisher Information Matrix.
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Laplace Approximation

One important consequence of the Fisher Information and its properties, is
that we can approximate any likelihood function as a multivariate normal
distribution:

f(x; θ) N (θ, F−1)

This can be used to approximate the confidence intervals for any likelihood
function with a similar procedure we used for the linear regression models.
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Likelihood Ratio

We can calculate the Likelihood Ratio as:

Λ(θ1 : θ2; x) = L(θ1; x)
L(θ2; x)

And it can be interpreted as howmuch the data support one parameter versus
the other. It can also be used for statistical test comparing two hypotheses.
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Relative Likelihood Ratio

Once you find the ˆtheta that maximizes the likelihood function (also called
maximum likelihood estimate), we can calculate the relative likelihood
ratio for any value of θ as:

R(θ) = L(θ; x)
L(θ̂; x)

This standardizes the likelihood to a maximum value of 1.
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Likelihod Intervals

The relative likelihood ratio can be used to define a likelihood interval by
finding the set of values θ such that:

{
θ : R(θ) ≥ p

100

}

This is interpreted as the region in which the likelihood ratio is within a
certain percentage. Not to be confused with the coverage Interpretation of
confidence intervals.

Wilk’s theorem says that two times the difference of the log-likelihood is
approximately a chi-squared distribution. This will be explored later!
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Likelihood of Common Regression
Distributions



Likelihood of Common Regression Distributions

In regression analysis, theGeneralized Linear Models (GLM) extends the
linear model to support different distribution by means of a link function
(g).

E[y | x; β] = g(µ) = f(x; β) = (xβ)

The linear model can be transformed with the inverse link function g−1 that
maps the linear relationship to the mean of the desired distribution.
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Likelihood of Common Regression Distributions

Likewise, given a nonlinear model f(x; θ) we can apply the same transfor-
mation to generalize to different distributions.

In the following slides we will see the link function, negative log-likelihood
(nll), first and second order derivatives for commons distributions we will
use throughout the remainder of the course.

The first oder derivative will be used during the parameter optimization pro-
cess. The second-order will be also used for the optimization process and
the calculation of the Fisher Information Matrix.
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Likelihood of Common Regression Distributions

The following slides will depict the likelihood L(µ; y) as the probability of
observing the targer value y when the true mean of the distribution is µ.

We will use µ to represent g−1(f(x; θ)), the inverse of the link function
applied to the nonlinear model.
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Gaussian Likelihood

L(µ; y) =
∏

i

1√
2πσ2

e−(y(i)−µ(i))2/(2σ2)

nll(µ; y) = −
∑

i

log((2πσ2)−0.5e−(y(i)−µ(i))2/(2σ2))

nll(µ; y) = −
∑

i

−0.5 log(2πσ2) − 0.5(y(i) − µ(i))2/sigma2

nll(µ; y) = 0.5
∑

i

log(2πσ2) + (y(i) − µ(i))2/sigma2
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Gaussian Likelihood

µ = f(x; θ)
nll(µ; y) = 0.5

∑
i

log(2πσ2) + (y(i) − µ(i))2/sigma2

∂

∂θj
nll(µ; y) = 1

σ2

∑
i

(µ(i) − y(i) ∂

∂θj
f(x(i); θ)

∂

∂θjθk
nll(µ; y) = 1

σ2

∑
i

(µ(i) − y(i)) ∂

∂θjθk
f(x(i); θ)

− ∂

∂θj
f(x(i); θ) ∂

∂θk
f(x(i); θ)
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Bernoulli Likelihood

L(µ; y) =
∏

i

µy(i)(1 − µ)1−y(i)

nll(µ; y) = −
∑

i

log(µy(i)(1 − µ)1−y(i))

nll(µ; y) = −
∑

i

(y(i) log(µ) + (1 − y(i)) log(1 − µ))
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Bernoulli Likelihood

µ = 1
1 + e−f(x;θ)

nll(µ; y) = −
∑

i

(y(i) log(µ) + (1 − y(i)) log(1 − µ))

∂

∂θj
nll(µ; y) =

∑
i

(µ(i) − y(i)) ∂

∂θk
f(x(i); θ)

∂

∂θjθk
nll(µ; y) =

∑
i

µ(i)(1 − µ(i)) ∂

∂θj
f(x(i); θ) ∂

∂θk
f(x(i); θ)

+ (µ(i) − y(i)) ∂

∂θjθk
f(x(i); θ)

42



Poisson Likelihood

L(µ; y) =
∏

i

(µ(i))y(i)

y(i)!
e−µ(i)

nll(µ; y) = −
∑

i

log((µ(i))y(i)

y(i)!
e−µ(i))

nll(µ; y) = −
∑

i

y(i) log µ(i) − µ(i) − y(i) log y(i)

nll(µ; y) =
∑

i

µ(i) + y(i) log y(i) − y(i) log µ(i)
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Poisson Likelihood

µ = ef(x;θ)

nll(µ; y) =
∑

i

µ(i) + y(i) log y(i) − y(i) log µ(i)

∂

∂θj
nll(µ; y) =

∑
i

(µ(i) − y(i)) ∂

∂θj
f(x(i); θ)

∂

∂θjθk
nll(µ; y) =

∑
i

µ(i) ∂

∂θjθk
f(x(i); θ) + (µ(i)

− y(i)) ∂

∂θj
f(x(i); θ) ∂

∂θk
f(x(i); θ)
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Terminology learned today

• Fisher Information: measures how much information a random
variable carries about the model parameters.

• Laplace Approximation: approximates a distribution as a
multinomial normal distribution with covariance equals to the
inverse of the Fisher Information Matrix.

• Likelihood Ratio: the ratio of likelihood for two different
parameters.

• Relative Likelihod Ratio: the likelihood standardized by the
maximum likelihood estimate.

• Maximum Likelihood Estimate: the value θ̂ that maximizes the
likelihood.

• Likelihod Interval: the interval of θ that keeps a relatve likelihood
ratio to a percentage.
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Next lecture

• Nonlinear Optimization
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