Nonlinear Optimization

Prof. Fabrício Olivetti de França
Federal University of ABC
05 February, 2024

Nonlinear Optimization

Optimization Problems

Optimization plays an important role in our day to day lives:

- We optimize our dialy routines so we can go to work, have leisure time, do some sports
- Companies optimize their process to minimize costs, maximize profits
- Nature optimizes their process with the goal of minimizing energy consumption

Optimization Problems

An optimization problem is characterized by:

- Objective-function: a quantitative measure of performance
- Variables: quantitative description of the system
- Constraints: a mathematical descriptions of any constraint imposed to the variables or objective-function

Optimization Problems

A common description of optimization problem is:

$$
\begin{array}{r}
\min _{x \in \mathbb{R}^{n}} f(x) \\
\text { subject to } \\
\begin{cases}c_{i}(x)=0 & i \in \mathcal{E} \\
c_{i}(x) \geq 0 & i \in \mathcal{I}\end{cases}
\end{array}
$$

where \mathcal{E}, \mathcal{I} are equality and inequality constraints, respectively. These two sets of are enough to describe any constraint.

Optimization Algorithms

Most interesting optimization problems do not have a closed form solution. As such, we must rely on optimization algorithms to find, at least, a local optima. Ideally we want to apply algorithms that are:

- Robust: they must perform well in general.
- Efficient: they should not require too much compute time and memory.
- Accurate: they must not be affected by rounding errors or data innacuracy.

Convexity

S is a convex set if for any two points $x, y \in S$ it follows that $\alpha x+(1-\alpha) y \in S$, for $0 \leq \alpha \leq 1$.

This means that if we connect two points in this set with a line, all of the points the line cross will belong to the set.

Convex Function

-

f is a convex function if its domain is a convex set and, given $x, y \in S, f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$ for $0 \leq \alpha \leq 1$.

Convex Function

Convex Function

Whenever the function is convex, some optimization algorithms can guarantee convergence to the global optima.

Least Squares Problem

So far we have mostly worked with the least squares formulation for our regression models:

$$
\min _{\theta \in \mathbb{R}^{P}} \mathcal{L}(x, y ; \theta)=\sum_{i}\left(y^{(i)}-f\left(x^{(i)} ; \theta\right)\right)^{2}
$$

But, as we learned from last week, we will need to optimize different likelihod functions that do not fit into least squares.

Global and Local Minima

A solution x^{*} is a global minimum if $f\left(x^{*}\right) \leq f(x)$, for all x.
The solution x^{*} is a local minimum if there is a neighborhood \mathcal{N} such that $f\left(x^{*}\right) \leq f(x)$, for $x \in \mathcal{N}$.

The concept of global and local maximum is analogous.

Global and Local Minima

Having many local optima poses as a challenge to optimization algorithms.

Detecting Local Minima

Let's review the Taylor Theorem assuming a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a $p \in \mathbb{R}^{n}$:

$$
f(x+p)=f(x)+\nabla f(x+t p)^{T} p
$$

for some $t \in(0,1)$.

Detecting Local Minima

If it is twice differentiable, we have:

$$
\begin{aligned}
\nabla f(x+p) & =\nabla f(x)+\int_{0}^{1} \nabla^{2} f(x+t p)^{T} p d t \\
f(x+p) & =f(x)+\nabla f(x)^{T} p+\frac{1}{2} p^{T} \nabla^{2} f(x+t p) p
\end{aligned}
$$

for $t \in(0,1)$. This will help us to define necessary conditions for optimality of x^{*}.

First-Order Necessary Conditions

If x^{*} is a local optima, then $\nabla f\left(x^{*}\right)=0$ also called a stationary point.

Second-Order Necessary Conditions

If x^{*} is a local optima, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite.

Optimization Algorithms

Optimization Algorithms

There are two main strategies for nonlinear optimization algorithms:

- Line Search: that chooses a direction and find the step length that minimizes (or maximize) the function.
- Trust Region: we build a model function that approximates the function f within a small neighborhood. We use this proxy model to find the local optima of that region.

Line Search Methods

Line Search Methods

In Line Search methods we compute a new value for x at every iteration k as:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

where α_{k} is a positive scalar called step length and p_{k} is the direction we are searching.

Line Search Methods

A common requirement is that $p_{k}^{T} \nabla f_{k}<0$ implying that the function value can be reduced at this direction. If we want to maximize the objectivefunction we simply change the sign of α_{k}.

Line Search Methods

The search direction p_{k} is often written as:

$$
p_{k}=-B_{k}^{-1} \nabla f_{k}
$$

where B_{k} is a symmetric and non-singular matrix (square matrix with nonzero determinant).

Line Search Methods

A general line search algorithm can be described as:

```
linesearch-opt b-matrix step f x k =
    k == 0 = x
    otherwise = let nabla = grad f x
            b = b-matrix f x
            p = -inv(b) * nabla
            alpha = step f x p
            x' = x + alpha * p
in linesearch-opt b-matrix step f x' (k-1)
```

Besides the objective-function, we have to choose the functions b-matrix and step.

Steepest Descent

One choice for the B_{k} is the identity matrix I. This will return the direction that leads to the steepest descent as $p_{k}=-\nabla f_{k}$.

Newton's method

Another choice is to set $B_{k}=\nabla^{2} f_{k}$ as it will scale the gradient with a quadratic fitting of the current point neighborhood. If the neighborhood happens to be quadratic, it will converge in one step.

Quasi-Newton's method

Calculating the inverse of the Hessian matrix may be expensive, we iteratively update B_{k} to approximate the inverse of the Hessian at every step.
One example is the BFGS that, given an initial $H_{k}=B_{k}^{-1}$, it updates H_{k+1} as:

$$
\begin{aligned}
\Delta x_{k} & =-\alpha_{k} H_{k} \nabla f_{k} \\
y_{k} & =\nabla f_{k+1}-\nabla f_{k} \\
H_{k+1} & =\left(I-\frac{\Delta x_{k} y_{k}^{T}}{y_{k}^{T} \Delta x_{k}}\right) H_{k}\left(I-\frac{y_{k} \Delta x_{k}^{T}}{y_{k}^{T} \Delta x_{k}}\right)+\frac{\Delta x_{k} \Delta x_{k}^{T}}{y_{k}^{t} \Delta x_{k}}
\end{aligned}
$$

Step Size

Once we pick a direction, we have to choose α_{k} that minimizes $f\left(x_{k}+\right.$ $\alpha_{k} p_{k}$).

This is reduced to an optimization problem of a single variable. Nevertheless, we do not want to spend a lot of computational time computing the best step size.

Step Size

Our problem can be described as a minimization problem (if we are minimizing the original function) as:

$$
\begin{aligned}
& \min _{\alpha} \phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right) \\
& \text { subject to }
\end{aligned}
$$

$$
\alpha>0
$$

Step Size

The main approach for step size is an iterative process that first finds an interval of values that likely contains the step sizes of interest and an interpolation stage that picks one step size from this interval.

This algorithm requires a stop condition for the bracketing such that gives us a balance between sufficient reduction and computational cost.

Step Size

One trivial condition is simply $f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$, but this can leads to an insufficient reduction:

Figure 3.2 Insufficient reduction in f.
Figure 1: Nocedal, Jorge, and Stephen J. Wright, eds. Numerical optimization. New York, NY: Springer New York, 1999.

Wolfe Conditions

A popular set of conditions are the Wolfe Conditions that are split into sufficient decrease and curvature conditions.

Wolfe Conditions

The sufficient decrease condition says:

$$
\begin{aligned}
& f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k} \\
& \quad c_{1} \in(0,1)
\end{aligned}
$$

Wolfe Conditions

The value c_{1} defines how much reduction we are willing to accept. If $c_{1}=1$ and the function was linear within $\alpha \in(0,1)$, it would correctly guess the amount of reduction.

Wolfe Conditions

The value of c_{1} is usually small, for example $c_{1}=10^{-4}$.

The other condition is about the curvature:

$$
\begin{array}{r}
\nabla f\left(x_{k}+\alpha_{k} p_{k}\right) p_{k} \geq c_{2} \nabla f_{k}^{T} p_{k} \\
c_{2} \in\left(c_{1}, 1\right)
\end{array}
$$

This ensures that the slope of $\phi\left(\alpha_{k}\right)$ is greater than $c_{2} \nabla \phi(0)$, if the slope is a large negative value, we can significantly reduce f moving along that direction. Common values for c_{2} is 0.9 when using Newton or quasi-Newton directions and 0.1 when using conjugated gradients.

Wolfe Conditions

Plotting $\nabla f\left(x_{k}+\alpha_{k} p_{k}\right) p_{k}-c_{2} \nabla f_{k}^{T} p_{k}$ we have:

Backtracking algorithm

The decrease condition is not always enough to ensure that the algorithm makes enough progress. But, the backtracking algorithm can help to achieve a reasonable step size:

```
-- 0 < rho,c1 < 1
-- assuming f,fk,pk,gradk within scope
backtracking alpha rho c1
    wolfe1 xk pk c1 = alpha
    | otherwise = backtracking (rho*alpha) rho c1
```

With a reasonable choice of ρ, it will ensure that the returned α decreases the function while keeping α large enough. A good start value for Newton method is $\alpha=1$.

Backtracking algorithm

The main idea of this algorithm is to start from a value that does not meet the sufficient decrease condition, and reduce α until it does.

Analytical solution for quadratic functions

If the function is quadratic described as $f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c$, we can obtain the optimal step size with:

$$
\alpha_{k}=-\frac{\nabla f_{k}^{T} p_{k}}{p_{k}^{T} Q p_{k}}
$$

Two-way backtracking

The backtracking algorithm only ensures the sufficient decrease condition. In practice, this algorithm can be enough to ensure a fast convergence without much computational cost.

Still, for lage scale problems (too many parameters), the sufficient condition may be expensive to calculate.

Two-way backtracking

An improvement to two-way backtracking ${ }^{1}$ comes from the observation that the step size for two subsequent iterations of the optimization algorithm will not vary too much. So, instead of starting the algorithm from an α_{0} we can start from the previous used α_{k-1} :

```
-- 0 < rho,c1 < 1
-- assuming f,fk,pk,gradk within scope
-- assuming alpha is the previously selected alpha
-- alphaO is the initial alpha of the first backtracking call
twoway-backtracking alpha rho c1
    wolfe1 xk pk c1 = backtracking-inc alpha rho c1
    | otherwise = backtracking alpha rho c1
backtracking-inc alpha rho c1
    | wolfe1 xk pk c1 && alpha <= 1
        = backtracking-inc (alpha/rho) rho c1
    | otherwise = alpha
```

[^0]
Interpolation methods

Another strategy is to use interpolation to reduce the current step size until the conditions are satisfied. This has the advantage of dynamically determining the amount of reduction instead of using a fixed value.

Let us rewrite the sufficient decrease condition as:

$$
\begin{aligned}
f\left(x_{k}+\alpha p_{k}\right) & \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k} \\
\phi(\alpha) & \leq \phi(0)+c_{1} \alpha \phi^{\prime}(0)
\end{aligned}
$$

Interpolation methods

If we test an initial guess α_{0} that already satisfy the condition, we stop the search.

Otherwise, we must investigate the interval $\left[0, \alpha_{0}\right]$. We can use a quadratic interpolation based on the current information:

$$
\begin{aligned}
\phi_{q}(\alpha) & =a \alpha^{2}+b \alpha+c \\
\phi_{q}(0) & =\phi(0) \\
\phi_{q}^{\prime}(0) & =\phi^{\prime}(0) \\
\phi_{q}\left(\alpha_{0}\right) & =\phi\left(\alpha_{0}\right)
\end{aligned}
$$

Interpolation methods

$$
\begin{aligned}
\phi_{q}(\alpha) & =a \alpha^{2}+b \alpha+c \\
\phi_{q}(0) & =c \\
\phi_{q}(0) & =c \\
c & =\phi(0)
\end{aligned}
$$

Interpolation methods

$$
\begin{aligned}
\phi_{q}(\alpha) & =a \alpha^{2}+b \alpha+c \\
\phi_{q}^{\prime}(0) & =\phi^{\prime}(0) \\
\phi_{q}^{\prime}(\alpha) & =2 a \alpha+b \\
\phi_{q}^{\prime}(0) & =b \\
b & =\phi^{\prime}(0)
\end{aligned}
$$

Interpolation methods

$$
\begin{aligned}
\phi_{q}(\alpha) & =a \alpha^{2}+b \alpha+c \\
\phi_{q}\left(\alpha_{0}\right) & =\phi\left(\alpha_{0}\right) \\
\phi_{q}\left(\alpha_{0}\right) & =a \alpha_{0}^{2}+\phi^{\prime}(0) \alpha_{0}+\phi(0) \\
a & =\frac{\phi\left(\alpha_{0}\right)-p h i(0)-\alpha_{0} \phi^{\prime}(0)}{\alpha_{0}^{2}}
\end{aligned}
$$

Quadratic Interpolation

$$
\phi_{q}(\alpha)=\left(\frac{\phi\left(\alpha_{0}\right)-p h i(0)-\alpha_{0} \phi^{\prime}(0)}{\alpha_{0}^{2}}\right) \alpha^{2}+\phi^{\prime}(0) \alpha+\phi(0)
$$

Quadratic Interpolation

The value for α_{1} is the minimizer of such function:

$$
\alpha_{1}=-\frac{\phi^{\prime}(0) \alpha_{0}^{2}}{2\left[\phi\left(\alpha_{0}\right)-\phi(0)-\phi^{\prime}(0) \alpha_{0}\right]}
$$

Cubic Interpolation

If the quadratic interpolation already satisfies the sufficient decrease condition, we stop the search. Otherwise we go even further with a cubic interpolation.

$$
\begin{aligned}
\phi_{c}(\alpha) & =a \alpha^{3}+b \alpha^{2}+\alpha \phi^{\prime}(0)+\phi(0) \\
{\left[\begin{array}{l}
a \\
b
\end{array}\right] } & =\frac{1}{\alpha_{0}^{2} \alpha_{1}^{2}\left(\alpha_{1}-\alpha_{0}\right)}\left[\begin{array}{cc}
\alpha_{0}^{2} & -\alpha_{1}^{2} \\
-\alpha_{0}^{3} & \alpha_{1}^{3}
\end{array}\right]\left[\begin{array}{l}
\phi\left(\alpha_{1}\right)-\phi(0)-\phi^{\prime}(0) \alpha_{1} \\
\phi\left(\alpha_{0}\right)-\phi(0)-\phi^{\prime}(0) \alpha_{0}
\end{array}\right]
\end{aligned}
$$

Cubic Interpolation

The minimizer of the cubic interpolation is:

$$
\alpha_{2}=\frac{-b+\sqrt{b^{2}-3 a \phi^{\prime}(0)}}{3 a}
$$

We can repeat this procedure with the last two values until the condition is met.

Cubic Interpolation

This first version of the cubic interpolation requires only the calculation of the derivative at the point $\alpha=0$. A more precise cubic interpolation is calculated as:

$$
\begin{aligned}
\alpha_{i+1} & =\alpha_{i}-\left(\alpha_{i}-\alpha_{i-1}\right)\left[\frac{\phi^{\prime}\left(\alpha_{i}\right)+d_{2}-d_{1}}{\phi^{\prime}\left(\alpha_{i}\right)-\phi^{\prime}\left(\alpha_{i-1}\right)+2 d_{2}}\right] \\
d_{1} & =\phi^{\prime}\left(\alpha_{i-1}\right)+\phi^{\prime}\left(\alpha_{i}\right)-3 \frac{\phi\left(\alpha_{i-1}\right)-\phi\left(\alpha_{i}\right)}{\alpha_{i-1}-\alpha_{i}} \\
d_{2} & =\sqrt{d_{1}^{2}-\phi^{\prime}\left(\alpha_{i-1}\right) \phi^{\prime}\left(\alpha_{i}\right)}
\end{aligned}
$$

Initial Step

For all these line search methods, we need to specify an initial value of α_{0}. For Newton and quasi-Newton methods, we should always use $\alpha_{0}=1$.

For steepest descent and conjugated gradient, the common choice is:

$$
\alpha_{0}=\alpha_{k-1} \frac{\nabla f_{k-1}^{T} p_{k-1}}{\nabla f_{k}^{T} p_{k}}
$$

So the initial guess for step k of the optimization method is proportional to the last optimal step value with a first-order approximation.

Strong Wolfe condition

To ensure the strong wolfe condition (both sufficient decrease and curvature), we can follow an algorithm that works in two stages: a bracketing stage, that finds an initial bracket containing the values holding true to the condition, and a zoom stage that reduces the interval until we can decide for one value of α.

Strong Wolfe condition

```
line-search alpha_0 alpha_1 first
    | not (wolfe1 xk pk c1)
        || (phi (alpha_1) >= phi(alpha_0) \&\& not first)
        = zoom alpha_0 alpha_1
        wolfe2 xk pk c2 = alpha_1
    phi'(alpha_1) >= 0 = zoom alpha_1 alpha_0
    otherwise = line-search alpha_1 (2*alpha_i) False
```


Strong Wolfe condition

```
zoom alpha_lo alpha_hi =
    alpha_j = interpolate alpha_lo alpha_hi
    if not (wolfe1 xk pk c1) || phi(alpha_j) >= phi(alpha_lo)
        then zoom alpha_lo alpha_j
        else if
            wofe2 xk pk c2 = alpha_j
            phi'(alpha_j)(alpha_hi - alpha_lo) >= 0
            = zoom alpha_j alpha_lo
            | otherwise = zoom alpha_j alpha_hi
```


Comparison

- backtracking
- two-way backtracking
- interpolate
- line-search

Comparison

30 steps of steepest descent:

Method	Generated α	$f\left(x_{k}\right)$
Backtracking	265	-4.83
Two-way	84	$\$-1.63$
Interpolation	42	-35.62
Strong Wolfe	298	-35.65

Conjugated Gradient

Suppose we want to solve a linear system:

$$
A x=b
$$

where A is symmetric and positive definite.

Symmetric Matrices

$$
\begin{aligned}
A & =A^{T} \\
A_{i j} & =A_{j i} \text { for every } i, j
\end{aligned}
$$

Positive Definite

$$
x^{T} A x>0
$$

for any nonzero column vector x.

Positive Definite

Necessary conditions (but not sufficient):

1. $A_{i i}>0$ for all i
2. The element with the largest absolute value is in the diagonal
3. $\operatorname{det}(A)>0$

Conjugated Gradient

We can write this problem as a quadratic optimization:

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x
$$

They both share the same optima!

Conjugated Gradient

For this particular problem, the gradient function is the same as the residuals:

$$
\nabla f(x)=A x-b=r(x)
$$

Conjugated Directions

Conjugated directions $\left\{p_{0}, p_{1}, \ldots, p_{l}\right\}$ is the set of nonzero vectors such that:

$$
p_{i}^{T} A p_{j}=0
$$

for every $i \neq j$.

Conjugated Directions

One important property of these conjugated directions is that, for an optimization problem with $x \in \mathbb{R}^{n}$ and the conjugated directions $\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ we can generate the sequence $\left\{x_{k}\right\}$ for $k=[0, n-1]$ as:

$$
\begin{aligned}
x_{k+1} & =x_{k}+\alpha_{k} p_{k} \\
\alpha_{k} & =-\frac{r_{k}^{T} p_{k}}{p_{k}^{T} A p_{k}}
\end{aligned}
$$

And, for this specific problem, it will converge to the optimal solution.

Conjugated Directions

We can see that clearly for a diagonal matrix A that forms an ellipsis with its axes aligned with the coordinate directions.

As such, the coordinate directions are the conjugated directions.

Conjugated Directions

When A is not diagonal, the ellipsis is rotated and thus using the coordinate directions will not work:

Conjugated Directions

We can change our problem by rotating the axes such that the ellipsis is aligned to the coordinate directions.

$$
\begin{aligned}
& \hat{x}=S^{-1} x \\
& S=\left[p_{0} p_{1} \ldots p_{n-1}\right]
\end{aligned}
$$

Conjugated Directions

Now the quadratic optimization problem becomes:

$$
\hat{f}(\hat{x})=\frac{1}{2} \hat{x}^{T}\left(S^{T} A S\right) \hat{x}-\left(S^{T} b\right)^{T} \hat{x}
$$

Conjugated Directions

Notice that following what we have seen so far, when the Hessian matrix is diagonal, each coordinate minimization determines one component of x^{*}.

So we can reach the optimal solution in n steps.

Conjugated Directions

Also notice that:

$$
\begin{aligned}
r_{k} & =A x_{k}-b \\
x_{k+1} & =x_{k}+\alpha_{k} p_{k} A x_{k+1}-b \quad=A\left(x_{k}+\alpha_{k} p_{k}\right)-b \\
r_{k+1} & =A x_{k}-b+\alpha_{k} A p_{k} \\
r_{k+1} & =r_{k}+\alpha_{k} A p_{k}
\end{aligned}
$$

Conjugated Directions

We noticed that r_{k} is orthogonal to every search direction in the previous steps ($r_{k}^{T} p_{i}=0$).

This will be useful to determine the conjugated gradient method.

Conjugated Gradient

The main idea of conjugated gradient method is that we depart from an initial direction p_{0} and generate the direction p_{k} based only on p_{k-1}.

In this algorithm, each direction p_{k} is chosen as a linear combination of the steepest descent direction $-\nabla f\left(x_{k}\right)$ and the previous direction.

$$
p_{k}=-r_{k}+\beta_{k} p_{k-1}
$$

Conjugated Gradient

The scalar β_{k} is chosen such that $p_{k-1}^{T} A p_{k}=0$:

$$
\begin{aligned}
p_{k-1}^{T} A\left(-r_{k}+\beta_{k} p_{k-1}\right) & =0 \\
\beta_{k} p_{k-1}^{T} A p_{k-1} & =r_{k}^{T} A p_{k-1} \\
\beta_{k} & =\frac{r_{k}^{T} A p_{k-1}}{p_{k-1}^{T} A p_{k-1}}
\end{aligned}
$$

Conjugated Gradient

```
cg-basic x r p
    \(r=0=x\)
    otherwise \(=\)
        let ap = mtxmul A p
            alpha \(=-(\operatorname{dot} r p) /(\operatorname{dot} p a p)\)
            \(\mathrm{xk}=\mathrm{x}+\mathrm{alpha} * \mathrm{p}\)
            rk = mtxmul A xk - b
            beta \(=\operatorname{dot} r k a p /(\operatorname{dot} p a p)\)
            \(\mathrm{pk}=-\mathrm{rk}+\mathrm{beta} * \mathrm{p}\)
    in cg -basic xk rk pk
```


Conjugated Gradient

We can implement a more efficient version if we notice that:

$$
\begin{aligned}
r_{k}^{T} p_{k-1} & =0 \\
p_{k} & =-r_{k}+\beta_{k} p_{k-1} \\
\alpha_{k+1} & =-\frac{r_{k}^{T} p_{k}}{p_{k}^{T} A p_{k}} \\
\alpha_{k+1} & =-\frac{r_{k}^{T}\left(-r_{k}+\beta_{k} p_{k-1}\right)}{p_{k}^{T} A p_{k}} \\
\alpha_{k+1} & =\frac{r_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}}
\end{aligned}
$$

Conjugated Gradient

We can also simplify β_{k+1} as:

$$
\beta_{k+1}=\frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{t} r_{k}}
$$

Nonlinear Conjugated Gradient

We can change the original CG method to support nonlinear optimization with some small changes:

```
fletcher-reeves xk gradFk pk
    | gradFk == \(0=x k\)
    otherwise =
        let alpha = line-search xk pk
            xk1 \(=x k+\) alpha \(* \mathrm{pk}\)
            gradFk1 = grad xk1
            beta = dot gradFk1 gradFk1 / dot gradFk gradFk
            pk1 \(=-\) gradFk1 + beta \(*\) pk
            in fletcher-reeves xk1 gradFk1 pk1
fletcher-reeves x0 (grad xk) -(grad xk)
```


Nonlinear Conjugated Gradient

Another variation with a different choice of β is:

```
polak-ribiere xk gradFk pk
    | gradFk == \(0=x k\)
        otherwise =
            let alpha = line-search xk pk
            xk1 = xk + alpha * pk
            gradFk1 = grad xk1
            beta \(=\) dot gradFk1 (gradFk1 - gradFk) / dot gradFk gradFk
            pk1 = - gradFk1 + (max beta 0) * pk
            in polak-ribiere xk1 gradFk1 pk1
polak-ribiere x0 (grad xk) -(grad xk)
```


BFGS

Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm is a quasiNewton method that departs from the Newton method that uses the inverse of the Hessian to calculate the direction for the next iteration and replaces it with an approximation of the inverse Hessian, recalculated at every step.

BFGS

Assuming the nonlinear objective-function $f(x)$, let us call f_{k} the evaluation at the point x_{k}. At this same point, we can create a quadratic model.

$$
g_{k}(p)=f_{k}+\nabla f_{k}^{T} p+\frac{1}{2} p^{T} B_{k} p
$$

B_{k} is a symmetric positive definite matrix that is updated at every step.

BFGS

When $p=0$, the approximation matches $f_{k}, \nabla f_{k}$ exactly. The minimization of p_{k} leads to:

$$
\begin{aligned}
\nabla g_{k}(p) & =0 \\
\nabla_{p} f_{k}+\nabla f_{k}^{T} \nabla_{p} p+\nabla_{p} \frac{1}{2} p^{T} B_{k} p & =0 \\
B_{k} p & =-\nabla f_{k} \\
p_{k} & =-B_{k}^{-1} \nabla f_{k}
\end{aligned}
$$

BFGS

With the optimized direction, we take the step:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

choosing α_{k} that satisfies Wolfe conditions.

BFGS

The main idea of the algorithm is that, after calculating x_{k+1} we calculate B_{k+1} considering that we will build a new quadratic approximation:

$$
g_{k+1}(p)=f_{k+1}+\nabla f_{k+1}^{T} p+\frac{1}{2} p^{T} B_{k+1} p
$$

assuming that $\nabla g_{k+1}\left(-\alpha_{k} p_{k}\right)=\nabla f_{k}$.

BFGS

$$
\begin{aligned}
\nabla g_{k+1}\left(-\alpha_{k} p_{k}\right) & =\nabla f_{k} \\
\nabla f_{k+1}-\alpha_{k} B_{k+1} p_{k} & =\nabla f_{k} \\
B_{k+1} \alpha_{k} p_{k} & =\nabla f_{k+1}-\nabla f_{k}
\end{aligned}
$$

BFGS

Let us denote:

$$
\begin{aligned}
s_{k} & =x_{k+1}-x_{k} \\
y_{k} & =\nabla f_{k+1}-\nabla f_{k} \\
B_{k+1} s_{k} & =y_{k}
\end{aligned}
$$

This is called the secant equation.

BFGS

With the curvature condition (second Wolfe condition):

$$
\begin{aligned}
-p_{k}^{T} \nabla f_{k+1} & \leq-c_{2} p_{k}^{T} \nabla f_{k} \\
p_{k}^{T} \nabla f_{k+1} & \geq c_{2} p_{k}^{T} \nabla f_{k} \\
p_{k}^{T}\left(\nabla f_{k+1}-c_{2} \nabla f_{k}\right. & \geq 0 \\
\left(x_{k+1}-x_{k}\right)^{T}\left(\nabla f_{k+1}-c_{2} \nabla f_{k}\right. & \geq 0
\end{aligned}
$$

We require that $s_{k}^{T} y_{k}>0$ so that the calculation of B_{k+1} always have a solution.

BFGS

To determine an unique solution for B_{k+1} we impose an additional condition:

$$
\begin{array}{r}
\min _{B}\left\|B-B_{k}\right\| \\
\text { st. } B=B^{T}, B s_{k}=y_{k}
\end{array}
$$

BFGS

The solution of this optimization problem is:

$$
B_{k+1}=\left(I-\frac{y_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\right) B_{k}\left(I-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right)+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}
$$

BFGS

But we want to calculate the inverse of this matrix:

$$
H_{k}=B_{k}^{-1}
$$

BFGS

We can calculate that with:

$$
H_{k+1}=\left(I-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right) H_{k}\left(I-\frac{y_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\right)+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}
$$

BFGS

The initial value H_{0} can be calculated :

- The inverse of the true Hessian
- The inverse of the approximated Hessian using finite difference
- The identity matrix

BFGS

```
-- assume * does multmtx when involving matrices
bfgs xk gradFk Hk eps
    norm gradFk < eps = xk
    otherwise =
            let pk = - multmtx Hk gradFk
            alpha = line-search xk pk
            xk1 = xk + alpha * pk
            gradFk1 = grad xk1
            sk = xk1 - xk
                yk = gradFk1 - gradFk
                ys = yk.T * sk
                Hk1 = (ident - sk * yk.T / ys) * Hk
                        * (ident - yk * sk.T / ys)
                        + (sk * sk.T) / ys
            in bfgs xk1 gradFk1 Hk1 eps
bfgs x0 (grad x0) (hess x0) eps
```


Calculating the Gradient and Hessian of a Symbolic Model

Differentiating Symbolic Models

The optmization metods learned so far require the calculation of the gradient and, sometimes, the Hessian of the function we want to optimize.

In nonlinear regression, we often provide the objective-function and a function that returns the gradient.

Differentiating Symbolic Models

But, in Symbolic Regression we do not have the knowledge of the symbolic model a priori. As such we can approximate the derivatives or generate the symbolic function of the derivatives.

Symbolic Derivatives

Let us assume the following symbolic function representation:

```
data SRTree val =
    Var Int -- - index of the variables
    Const Double -- - constant value
    Uni Function val -- - univariate function
    Bin Op val val -- - binary operator
```


Symbolic Derivatives

We can easily determine the derivative wrt a variable $d x$ as:

```
deriveBy :: Int -> SRTree -> SRTree
deriveBy dx t = case t of
    (Var ix) -> if ix==dx then 1 else 0
    (Const _) -> 0
    (Uni f t) -> derivative f (eval t) * deriveBy dx t
    (Bin Add l r) -> deriveBy dx l + deriveBy dx r
    (Bin Sub l r) -> deriveBy dx l - deriveBy dx r
    (Bin Mul l r) -> deriveBy dx l * eval r
    + eval l * deriveBy dx r
    (Bin Div l r) -> (deriveBy dx l * eval r - eval l * deriveBy dx r)
    / eval r ** 2
    (Bin Power l r) -> eval l ** (eval r - 1)
        * (eval r * deriveBy dx l
    + eval l * log (eval l) * deriveBy dx r)
```


Symbolic Derivatives

In this function derivative is the derivative of a function f and eval evaluates a subtree.

With this algorithm, the gradient is simply the list of symbolic expressions generated as [deriveBy $\mathrm{dx} \mathrm{t} \mid \mathrm{dx}<-$ [1 .. p]].

The Hessian matrix can be calculated as the second order derivative [deriveBy dy (deriveBy dx t) | dx <- [1 .. p], dy <[1 . . p]].

Symbolic Derivatives

The main problem with this approach is that whenever we want to calculate the gradient (or Hessian) we have to traverse the symbolic trees multiple times, which can be computationally intensive depending on the size of the expression.

Also, the derivative of an expression may be larger than the original expression! Let us use this expression as an example:

$$
f(x)=\left(x_{1} x_{2} \sin x_{3}+e^{x_{1} x_{2}}\right) / x_{3}
$$

To evaluate this expression we need a total of 7 operations.

Symbolic Derivatives

The partial derivatives of this expression are:

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}} & =\left(\left(x_{2} \sin x_{3}+x_{2} e^{x_{1} x_{2}}\right) x_{3}-\left(x_{1} x_{2} \sin x_{3}+e^{x_{1} x_{2}} 0\right) / x_{3}^{2}\right. \\
\frac{\partial f}{\partial x_{2}} & =\left(\left(x_{1} \sin x_{3}+x_{1} e^{x_{1} x_{2}}\right) x_{3}-\left(x_{1} x_{2} \sin x_{3}+e^{x_{1} x_{2}} 0\right) / x_{3}^{2}\right. \\
\frac{\partial f}{\partial x_{3}} & =\left(\left(x_{1} x_{2} \cos x_{3}\right) x_{3}-\left(x_{1} x_{2} \sin x_{3}+e^{x_{1} x_{2}}\right) 1\right) / x_{3}^{2}
\end{aligned}
$$

In this case we have $17,17,13$ operations respectively, or 47 in total.

Symbolic Derivatives

If we simplify this expression we can reduce the total evaluations to 24 :

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}=\left(x_{2}\left(\sin x_{3}+e^{x_{1} x_{2}}\right)\right) / x_{3} \\
& \frac{\partial f}{\partial x_{2}}=\left(x_{1}\left(\sin x_{3}+e^{x_{1} x_{2}}\right)\right) / x_{3} \\
& \frac{\partial f}{\partial x_{3}}=\left(\left(x_{1} x_{2}\left(\cos x_{3}\right) x_{3}-\sin x_{3}\right)+e^{x_{1} x_{2}}\right) / x_{3}^{2}
\end{aligned}
$$

But this requires the additional step of simplification.

Finite Difference

A common formula for calculating an approximation of a derivative is given by the finite difference:

$$
\frac{\partial f}{\partial x_{i}}(x) \approx \frac{f\left(x+\epsilon e_{i}\right)-f(x)}{\epsilon}
$$

where e_{i} is the vector with 1 at the i-th position and 0 in every other position.
As ϵ approximates 0 it will increase the accuracy of the approximation.

Finite Difference

This approximation is limited by the round-off errors of the floating-point representation. We can improve the previous formula by doing:

$$
\frac{\partial f}{\partial x_{i}}(x) \approx \frac{f\left(x+\epsilon e_{i}\right)-f\left(x-\epsilon e_{i}\right)}{2 \epsilon}
$$

But now it requires two evaluations per coordinate.

Finite Difference

For our example function at the point $[1,1,1]$ we have:

$\text { grad: } \underset{\text { Finit }}{[3}$	$\begin{aligned} & 75281 \\ & \text { ff } 1 \text { : } \end{aligned}$	$\begin{aligned} & 81-3.01945051] \\ & \\ & \text { Finite diff } 2 \end{aligned}$		
eps $=1.00 \mathrm{e}-01$:	[3.70031294	$3.70031294-2.78399006]$	3.56428555	$3.56428555-3.04661284]$
eps $=1.00 \mathrm{e}-02$:	3.57338964	$3.57338964-2.99372954]$	3.55979812	$3.55979812-3.01971941]$
eps $=1.00 \mathrm{e}-03:$	3.56111241	$3.56111241-3.01685448]$	3.55975327	$3.55975327-3.0194532$
eps $=1.00 \mathrm{e}-04$:	3.55988873	$3.55988873-3.01919066]$	3.55975282	$3.55975282-3.01945053]$
$\mathrm{eps}=1.00 \mathrm{e}-05:$	3.5597664	$3.5597664-3.01942452]$	3.55975281	$3.55975281-3.01945051]$
eps $=1.00 \mathrm{e}-06$:	3.55975417	$3.55975417-3.01944791]$	3.55975281	$3.55975281-3.01945051]$
eps $=1.00 \mathrm{e}-07$:	3.55975295	$3.55975295-3.01945025]$	3.55975281	$3.55975281-3.01945051]$
eps $=1.00 \mathrm{e}-08:$	3.55975285	$3.55975285-3.01945042]$	3.55975283	$3.55975283-3.01945049]$
eps $=1.00 \mathrm{e}-09$:	3.55975338	$3.55975338-3.01945047]$	3.55975294	$3.55975294-3.01945069]$
eps $=1.00 \mathrm{e}-10$:	3.55975693	$3.55975693-3.01944691]$	3.55975249	3.55975249 -3.01944914]

In this example, $\epsilon=10^{-7}$ can already return a good approximation.
Assuming that we already have $f(x)$ evaluated, the first finite difference takes 7 operations and the second 14 .

Finite Difference

The second-order derivative can be similarly approximated as:

$$
\begin{aligned}
& \nabla^{2} f(x) \approx \frac{\nabla f\left(x+\epsilon e_{i}\right)-\nabla f(x)}{\epsilon} \\
& \nabla^{2} f(x) \approx \frac{\nabla f\left(x+\epsilon e_{i}\right)-\nabla f\left(x-\epsilon e_{i}\right)}{\epsilon^{2}}
\end{aligned}
$$

Finite Difference

For our example function at the point $(1,1,1)$ we have:

```
True hessian: [2.71828183 2.71828183 5.19743003]
    Finite diff 1: Finite diff 2
eps = 1.00e-01: [lll.00667033 3.00667033 3.89792931] [ [2.72735486 2.72735486 5.4243967 ]
eps =1.00e-02: [llllllll
eps =1.00e-03: [llllll
eps = 1.00e-04: [lllllll
eps = 1.00e-05: [ [2.7182967 2.7182967 5.19727372] [ [2.71828338 2.71828338 5.19743359]
eps = 1.00e-06: [ll.71871414 2.71871414 5.19628784] [ [2.7184921 2.7184921 5.19750909]
eps = 1.00e-07: [2.62012634 2.62012634 5.2846616] [ [2.73114864 2.73114864 5.20694599]
eps = 1.00e-08: [ 4.4408921 4.4408921 -8.8817842] [5.55111512 5.55111512 5.55111512]
eps =1.00e-09: [-888.1784197 -888.1784197 444.08920985] [111.02230246 111.02230246 222.04460493]
eps = 1.00e-10: [-44408.92098501 -44408.92098501 -44408.92098501] [22204.4604925 22204.4604925 11102.2
```

In this case we can see that with a small ϵ the results can diverge.

Automatic Differentiation

Automatic Differentiation is a set of techniques the exploits computational representation of a function to produce the analytical values of a derivative.

These techniques have been used extensively in Deep Learning literature to improve the overall performance of gradient based optimization of large neural networks.

Automatic Differentiation

It is founded by to important concepts:

- Any function can be split into a sequence of simple elementary operations
- The chain rule of derivatives

Automatic Differentiation

There are two basic modes of operation:

- forward mode: we evaluate the function graph represeantion from the root nodes to the leaf
- reverse mode: we perform a two pass, first evaluating the forward step and then back to the roots

Automatic Differentiation

Let us exemplify with the expression:

$$
f(x)=\left(x_{1} x_{2} \sin x_{3}+e^{x_{1} x_{2}}\right) / x_{3}
$$

Automatic Differentiation

Automatic Differentiation

This computation graph is a directed acyclic graph in which the value of a node can be calculated by the operation applied to the values of its parents nodes.

The flow of the computation is from left to right, also known as forward sweep.

Forward mode

The main idea of the forward mode is to calculate the evaluation of the function and the gradient vector in a single forward sweep.

In this mode we calculate the directional derivative $\nabla f(x)^{T} p$ in the direction p.

Forward mode

Let us denote the directional derivative at x_{i} as:

$$
D_{p} x_{i}=\left(\nabla x_{i}\right)^{T} p=\sum_{j=1} n \frac{\partial x_{i}}{\partial x_{j}} p_{j}
$$

where n is the number of variables in the objective-function and i varies from 1 to the number of intermediate computation in the problem (in our example we have 9).

Forward mode

Notice from our graph that whenever we know the value of any x_{i} we can immediately calculate the value of $D_{p} x_{i}$ using the chain rule.

Forward mode

For example, let's use $p=e_{1}$ and $x=[1,1,1]$:

$$
\begin{aligned}
x_{1} & =1 \\
D_{p} x_{1} & =1+0+0=1 \\
x_{2} & =1 \\
D-p x_{2} & =0+0+0=0 \\
x_{3} & =1 \\
D-p x_{3} & =0+0+0=0
\end{aligned}
$$

Forward mode

Going forward in our graph we have (since p is 0 for the components 2,3 we will ommit this part of the calculation):

$$
\begin{aligned}
x_{4} & =x_{1} x_{2} \\
D_{p} x_{4} & =\frac{\partial x_{4}}{x_{1}}=x_{2} \\
x_{5} & =\sin x_{3} \\
D_{p} x_{5} & =\frac{\partial x_{5}}{x_{1}}=0 \\
x_{6} & =e^{x_{4}} \\
D_{p} x_{6} & =\frac{\partial x_{6}}{x_{1}}=D_{p} x_{4} e^{x_{4}}=x_{2} e^{x_{4}}
\end{aligned}
$$

Forward mode

If we repeat this procedure for every directional vector e we obtain the full gradient vector.

Notice that this can be done in parallel during the forward sweep.

Dual Numbers

A popular implementation of the forward mode uses the idea of dual numbers that is capable of storing the value of an expression together with the derivatives.

Dual Numbers

Dual Numbers were introduced in ${ }^{2}$ and, in the context of automatic differentiation it can be used to store the derivatives together with the evaluation of the function.

[^1]
Dual Numbers

A dual number can be represented as:

$$
a+b \epsilon
$$

where a is the evaluation, b is the derivative, with the property that $\epsilon^{2}=0$.

Dual Numbers

The dual numbers have the following properties:

$$
\begin{aligned}
(a+b \epsilon)+(c+d \epsilon) & =(a+c)+(b+d) \epsilon \\
(a+b \epsilon)(c+d \epsilon) & =(a c)+(a d+b c) \epsilon \\
f(a+b \epsilon) & =f(a)+b f^{\prime}(a) \epsilon \\
f(g(a+b \epsilon)) & =f(g(a))+b f^{\prime}(g(a)) g^{\prime}(a) \epsilon
\end{aligned}
$$

Dual Numbers

For multivariate problems we turn ϵ into a vector holding the derivatives of each variable:

$$
a+b \epsilon_{1}+c \epsilon_{2}+d \epsilon_{3}
$$

Dual Numbers

```
forwardMode x tree =
    case tree of
        Var ix -> (x[ix], [if iy==ix then 1 else 0 | iy <- [1..p]])
        Const v -> (v, [0 | _ <- [1..p]])
        Uni f t -> let (v, e) = forwardMode x t
            in (f v, f' v * e)
        Bin op l r -> let (v1, e1) = forwardMode x l
            (v2, e2) = forwardMode x r
                in (v1 `op` v2, binDeriv op v1 e1 v2 e2)
binDeriv Add v1 e1 v2 e1 = e1 + e2
binDeriv Sub v1 e1 v2 e1 = e1 - e2
binDeriv Mul v1 e1 v2 e1 = v2*e1 + v1*e2
binDeriv Div v1 e1 v2 e1 = e1/v2 - v1*e2/v2**2
```


Reverse Mode

In reverse mode we first make a forward sweep to calculate the partial values of each node. We then create an intermediate structure in the process holding these partials in a stack-like structure.

Once we have this structure, we can do a reverse sweep accumulating and merging a vector of derivatives as we traverse to the left.

Reverse Mode

Reverse Mode

```
data Stack x e = End x | Stack x e | Branch x e e
unstack (End x) = x
unstack (Stack x _) = x
unstack (Branch x _ _) = x
```


Reverse Mode

```
forwardStep x tree =
    case tree of
        Var ix -> End (x[ix])
    Const v -> End v
    Uni f t -> let t' = forwardStep x t
                        in Stack (f (unstack t')) t'
        Bin op l r >> let l' = forwardStep x l
                r' = forwardStep x r
                    in Branch (unstack l' `op` unstack r') l' r'
```


Reverse Mode

```
-- assume a global mutable array dxs starting with O
reverseMode x tree (dx, stack) =
    case tree of
    Var ix -> set dxs ix (dxs[ix] + dx)
    Const v -> return
    Uni f t -> let v = unstack stack
                        in reverseMode x t (dx * f' v, tail stack)
        Bin op l r >> let (l', r') = branches stack
        (vl, vr) = unstack stack
        (dl, dr) = binDeriv op vl vr
            in do reverseMode x l (dx * dl, l')
                        reverseMode x r (dx * dr, r')
```


Forward vs Reverse modes

The choice between forward and reverse modes depend on what kind of symbolic models and likelihood functions we will have to optimize.

- For functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, reverse mode is faster.
- For functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, forward mode can be faster when m is large.
- Reverse mode needs an intermediate structure to store the partial results.
- Reverse mode can be greatly improved if the computational graph is a tree.

Calculating the Hessian matrix

We can use this same procedures to calculate the hessian matrix. For forward mode we will change the calculation to the directional derivative $p^{T}\left(\nabla^{2} x_{i}\right) q$ where p, q are vectors from e.

The derivation rules are analogous so, for example, if $x_{i}=x_{j}+x_{k}$ the second order derivative wrt $x_{1} x_{2}$ is:

$$
D_{e_{1} e_{2}} x_{i}=D_{e_{1} e_{2}} x_{j}+D_{e_{1} e_{2}} x_{k}
$$

Calculating the Hessian matrix

If $x_{i}=f\left(x_{j}\right)$ we have:

$$
D_{e_{1} e_{2}} x_{i}=f^{\prime \prime}\left(x_{j}\right) D_{e_{1}} x_{j} D_{e_{2}} x_{j}+f^{\prime}\left(x_{j}\right) D_{e_{1} e_{2}} x_{j}
$$

Calculating the Hessian matrix

Notice that since the Hessian is symmetric, we only need to calculate either the lower or upper triangle.

We can do a similar adaptation to reverse mode by first using forward mode to calculate the evaluation and gradient at every node and then performing the reverse step assembling the Hessian matrix.

Calculating the Hessian matrix, even with automatic differentiation, can be expensive!

Next lecture

- Model Validation
T. BeContinued III

Acknowledgments

[^0]: ${ }^{1}$ Clifford. "Preliminary sketch of biquaternions." Proceedings of the London Mathematical Society 1.1 (1871): 381-395.

[^1]: ${ }^{2}$ Clifford. "Preliminary sketch of biquaternions." Proceedings of the London Mathematical Society 1.1 (1871): 381-395.

