
Nonlinear Optimization

Prof. Fabrício Olivetti de França

Federal University of ABC

05 February, 2024

Nonlinear Optimization

Optimization Problems

Optimization plays an important role in our day to day lives:

• We optimize our dialy routines so we can go to work, have leisure
time, do some sports

• Companies optimize their process to minimize costs, maximize
profits

• Nature optimizes their process with the goal of minimizing energy
consumption

1

Optimization Problems

An optimization problem is characterized by:

• Objective-function: a quantitative measure of performance
• Variables: quantitative description of the system
• Constraints: a mathematical descriptions of any constraint imposed
to the variables or objective-function

2

Optimization Problems

A common description of optimization problem is:

min
x∈Rn

f(x)

subject toci(x) = 0 i ∈ E

ci(x) ≥ 0 i ∈ I

where E , I are equality and inequality constraints, respectively. These two
sets of are enough to describe any constraint.

3

Optimization Algorithms

Most interesting optimization problems do not have a closed form solution.
As such, we must rely on optimization algorithms to find, at least, a local
optima. Ideally we want to apply algorithms that are:

• Robust: they must perform well in general.
• Efficient: they should not require too much compute time and
memory.

• Accurate: they must not be affected by rounding errors or data
innacuracy.

4

Convexity

S is a convex set if for any two points x, y ∈ S it follows that
αx + (1 − α)y ∈ S, for 0 ≤ α ≤ 1.

This means that if we connect two points in this set with a line, all of the
points the line cross will belong to the set.

5

Convex Function

f is a convex function if its domain is a convex set and, given
x, y ∈ S, f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) for
0 ≤ α ≤ 1.

6

Convex Function

−6 −4 −2 0 2 4 6

0

10

20

x

f
(x

)

7

Convex Function

Whenever the function is convex, some optimization algorithms can guar-
antee convergence to the global optima.

8

Least Squares Problem

So far we have mostly worked with the least squares formulation for our
regression models:

min
θ∈RP

L(x, y; θ) =
∑

i

(y(i) − f(x(i); θ))2

But, as we learned from last week, we will need to optimize different likeli-
hod functions that do not fit into least squares.

9

Global and Local Minima

A solution x∗ is a global minimum if f(x∗) ≤ f(x), for all x.

The solution x∗ is a local minimum if there is a neighborhood N such that
f(x∗) ≤ f(x), for x ∈ N .

The concept of global and local maximum is analogous.

10

Global and Local Minima

Having many local optima poses as a challenge to optimization algorithms.

−40 −20 0 20 40

−10

0

10

x

f
(x

)

11

Detecting Local Minima

Let’s review the Taylor Theorem assuming a continuously differentiable
function f : Rn → R and a p ∈ Rn:

f(x + p) = f(x) + ∇f(x + tp)T p

for some t ∈ (0, 1).

12

Detecting Local Minima

If it is twice differentiable, we have:

∇f(x + p) = ∇f(x) +
∫ 1

0
∇2f(x + tp)T pdt

f(x + p) = f(x) + ∇f(x)T p + 1
2

pT ∇2f(x + tp)p

for t ∈ (0, 1). This will help us to define necessary conditions for optimal-
ity of x∗.

13

First-Order Necessary Conditions

If x∗ is a local optima, then ∇f(x∗) = 0 also called a stationary point.

14

Second-Order Necessary Conditions

If x∗ is a local optima, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidef-
inite.

15

Optimization Algorithms

Optimization Algorithms

There are two main strategies for nonlinear optimization algorithms:

• Line Search: that chooses a direction and find the step length that
minimizes (or maximize) the function.

• Trust Region: we build a model function that approximates the
function f within a small neighborhood. We use this proxy model to
find the local optima of that region.

16

Line Search Methods

Line Search Methods

In Line Search methods we compute a new value for x at every iteration k

as:

xk+1 = xk + αkpk

where αk is a positive scalar called step length and pk is the direction we
are searching.

17

Line Search Methods

A common requirement is that pT
k ∇fk < 0 implying that the function

value can be reduced at this direction. If we want to maximize the objective-
function we simply change the sign of αk.

18

Line Search Methods

The search direction pk is often written as:

pk = −B−1
k ∇fk

where Bk is a symmetric and non-singular matrix (square matrix with
nonzero determinant).

19

Line Search Methods

A general line search algorithm can be described as:

linesearch-opt b-matrix step f x k =
| k == 0 = x
| otherwise = let nabla = grad f x

b = b-matrix f x
p = -inv(b) * nabla
alpha = step f x p
x' = x + alpha * p

in linesearch-opt b-matrix step f x' (k-1)

Besides the objective-function, we have to choose the functions
b-matrix and step.

20

Steepest Descent

One choice for the Bk is the identity matrix I . This will return the direction
that leads to the steepest descent as pk = −∇fk.

21

Newton’s method

Another choice is to set Bk = ∇2fk as it will scale the gradient with a
quadratic fitting of the current point neighborhood. If the neighborhood
happens to be quadratic, it will converge in one step.

22

Quasi-Newton’s method

Calculating the inverse of the Hessian matrix may be expensive, we itera-
tively update Bk to approximate the inverse of the Hessian at every step.

One example is the BFGS that, given an initial Hk = B−1
k , it updates

Hk+1 as:

∆xk = −αkHk∇fk

yk = ∇fk+1 − ∇fk

Hk+1 =
(

I − ∆xkyT
k

yT
k ∆xk

)
Hk

(
I − yk∆xT

k

yT
k ∆xk

)
+ ∆xk∆xT

k

yt
k∆xk

23

Step Size

Once we pick a direction, we have to choose αk that minimizes f(xk +
αkpk).

This is reduced to an optimization problem of a single variable. Neverthe-
less, we do not want to spend a lot of computational time computing the
best step size.

24

Step Size

Our problem can be described as a minimization problem (if we are mini-
mizing the original function) as:

min
α

ϕ(α) = f(xk + αpk)

subject to

α > 0

25

Step Size

The main approach for step size is an iterative process that first finds an
interval of values that likely contains the step sizes of interest and an inter-
polation stage that picks one step size from this interval.

This algorithm requires a stop condition for the bracketing such that gives
us a balance between sufficient reduction and computational cost.

26

Step Size

One trivial condition is simply f(xk + αkpk) < f(xk), but this can leads
to an insufficient reduction:

Figure 1: Nocedal, Jorge, and Stephen J. Wright, eds. Numerical optimization.
New York, NY: Springer New York, 1999.

27

Wolfe Conditions

A popular set of conditions are the Wolfe Conditions that are split into suf-
ficient decrease and curvature conditions.

28

Wolfe Conditions

The sufficient decrease condition says:

f(xk + αpk) ≤ f(xk) + c1α∇fT
k pk

c1 ∈ (0, 1)

29

Wolfe Conditions

The value c1 defines howmuch reductionwe arewilling to accept. If c1 = 1
and the function was linear within α ∈ (0, 1), it would correctly guess the
amount of reduction.

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

α

f
(x

k
+

α
p

k
)−

f
(x

k
)

c1 = 0.1
c1 = 0.5
c1 = 0.9
c1 = 1.0

30

Wolfe Conditions

The value of c1 is usually small, for example c1 = 10−4.

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

α

f
(x

k
+

α
p

k
)−

f
(x

k
)

c1 = 10−4

c1 = 0.1
c1 = 0.5
c1 = 0.9
c1 = 1.0

31

Wolfe Conditions

The other condition is about the curvature:

∇f(xk + αkpk)pk ≥ c2∇fT
k pk

c2 ∈ (c1, 1)

This ensures that the slope of ϕ(αk) is greater than c2∇ϕ(0), if the slope is
a large negative value, we can significantly reduce f moving along that di-
rection. Common values for c2 is 0.9 when using Newton or quasi-Newton
directions and 0.1 when using conjugated gradients.

32

Wolfe Conditions

Plotting ∇f(xk + αkpk)pk − c2∇fT
k pk we have:

0 0.2 0.4 0.6 0.8 1

−10

0

10

20

30

40

α

f
(x

k
+

α
p

k
)−

f
(x

k
)

c2 = 0.9
c2 = 0.1

33

Backtracking algorithm

The decrease condition is not always enough to ensure that the algorithm
makes enough progress. But, the backtracking algorithm can help to achieve
a reasonable step size:

-- 0 < rho,c1 < 1
-- assuming f,fk,pk,gradk within scope
backtracking alpha rho c1

| wolfe1 xk pk c1 = alpha
| otherwise = backtracking (rho*alpha) rho c1

With a reasonable choice of ρ, it will ensure that the returned α decreases
the function while keeping α large enough. A good start value for Newton

method is α = 1.

34

Backtracking algorithm

The main idea of this algorithm is to start from a value that does not meet
the sufficient decrease condition, and reduce α until it does.

35

Analytical solution for quadratic functions

If the function is quadratic described as f(x) = 1
2xT Qx + bT x + c, we

can obtain the optimal step size with:

αk = −∇fT
k pk

pT
k Qpk

36

Two-way backtracking

The backtracking algorithm only ensures the sufficient decrease condition.
In practice, this algorithm can be enough to ensure a fast convergence with-
out much computational cost.

Still, for lage scale problems (toomany parameters), the sufficient condition
may be expensive to calculate.

37

Two-way backtracking

An improvement to two-way backtracking1 comes from the observation that
the step size for two subsequent iterations of the optimization algorithmwill
not vary too much. So, instead of starting the algorithm from an α0 we can
start from the previous used αk−1:

-- 0 < rho,c1 < 1
-- assuming f,fk,pk,gradk within scope
-- assuming alpha is the previously selected alpha
-- alpha0 is the initial alpha of the first backtracking call
twoway-backtracking alpha rho c1

| wolfe1 xk pk c1 = backtracking-inc alpha rho c1
| otherwise = backtracking alpha rho c1

backtracking-inc alpha rho c1
| wolfe1 xk pk c1 && alpha <= 1

= backtracking-inc (alpha/rho) rho c1
| otherwise = alpha

1Clifford. “Preliminary sketch of biquaternions.” Proceedings of the London
Mathematical Society 1.1 (1871): 381-395.

38

Interpolation methods

Another strategy is to use interpolation to reduce the current step size until
the conditions are satisfied. This has the advantage of dynamically deter-
mining the amount of reduction instead of using a fixed value.

Let us rewrite the sufficient decrease condition as:

f(xk + αpk) ≤ f(xk) + c1α∇fT
k pk

ϕ(α) ≤ ϕ(0) + c1αϕ′(0)

39

Interpolation methods

If we test an initial guess α0 that already satisfy the condition, we stop the
search.

Otherwise, we must investigate the interval [0, α0]. We can use a quadratic
interpolation based on the current information:

ϕq(α) = aα2 + bα + c

ϕq(0) = ϕ(0)
ϕ′

q(0) = ϕ′(0)
ϕq(α0) = ϕ(α0)

40

Interpolation methods

ϕq(α) = aα2 + bα + c

ϕq(0) = c

ϕq(0) = c

c = ϕ(0)

41

Interpolation methods

ϕq(α) = aα2 + bα + c

ϕ′
q(0) = ϕ′(0)

ϕ′
q(α) = 2aα + b

ϕ′
q(0) = b

b = ϕ′(0)

42

Interpolation methods

ϕq(α) = aα2 + bα + c

ϕq(α0) = ϕ(α0)
ϕq(α0) = aα2

0 + ϕ′(0)α0 + ϕ(0)

a = ϕ(α0) − phi(0) − α0ϕ′(0)
α2

0

43

Quadratic Interpolation

ϕq(α) =
(

ϕ(α0) − phi(0) − α0ϕ′(0)
α2

0

)
α2 + ϕ′(0)α + ϕ(0)

44

Quadratic Interpolation

The value for α1 is the minimizer of such function:

α1 = − ϕ′(0)α2
0

2[ϕ(α0) − ϕ(0) − ϕ′(0)α0]

45

Cubic Interpolation

If the quadratic interpolation already satisfies the sufficient decrease condi-
tion, we stop the search. Otherwise we go even further with a cubic inter-
polation.

ϕc(α) = aα3 + bα2 + αϕ′(0) + ϕ(0)[
a

b

]
= 1

α2
0α2

1(α1 − α0)

[
α2

0 −α2
1

−α3
0 α3

1

] [
ϕ(α1) − ϕ(0) − ϕ′(0)α1

ϕ(α0) − ϕ(0) − ϕ′(0)α0

]

46

Cubic Interpolation

The minimizer of the cubic interpolation is:

α2 = −b +
√

b2 − 3aϕ′(0)
3a

We can repeat this procedure with the last two values until the condition is
met.

47

Cubic Interpolation

This first version of the cubic interpolation requires only the calculation of
the derivative at the point α = 0. A more precise cubic interpolation is
calculated as:

αi+1 = αi − (αi − αi−1)
[

ϕ′(αi) + d2 − d1
ϕ′(αi) − ϕ′(αi−1) + 2d2

]
d1 = ϕ′(αi−1) + ϕ′(αi) − 3ϕ(αi−1) − ϕ(αi)

αi−1 − αi

d2 =
√

d2
1 − ϕ′(αi−1)ϕ′(αi)

48

Initial Step

For all these line search methods, we need to specify an initial value of α0.
For Newton and quasi-Newton methods, we should always use α0 = 1.

For steepest descent and conjugated gradient, the common choice is:

α0 = αk−1
∇fT

k−1pk−1

∇fT
k pk

So the initial guess for step k of the optimization method is proportional to
the last optimal step value with a first-order approximation.

49

Strong Wolfe condition

To ensure the strong wolfe condition (both sufficient decrease and
curvature), we can follow an algorithm that works in two stages: a

bracketing stage, that finds an initial bracket containing the values holding
true to the condition, and a zoom stage that reduces the interval until we

can decide for one value of α.

50

Strong Wolfe condition

line-search alpha_0 alpha_1 first
| not (wolfe1 xk pk c1)

|| (phi(alpha_1) >= phi(alpha_0) && not first)
= zoom alpha_0 alpha_1

| wolfe2 xk pk c2 = alpha_1
| phi'(alpha_1) >= 0 = zoom alpha_1 alpha_0
| otherwise = line-search alpha_1 (2*alpha_i) False

51

Strong Wolfe condition

zoom alpha_lo alpha_hi =
alpha_j = interpolate alpha_lo alpha_hi
if not (wolfe1 xk pk c1) || phi(alpha_j) >= phi(alpha_lo)

then zoom alpha_lo alpha_j
else if
| wofe2 xk pk c2 = alpha_j
| phi'(alpha_j)(alpha_hi - alpha_lo) >= 0

= zoom alpha_j alpha_lo
| otherwise = zoom alpha_j alpha_hi

52

Comparison

• backtracking
• two-way backtracking
• interpolate
• line-search

53

/courses/RegSimbolica/videos/backtrack.mp4
/courses/RegSimbolica/videos/twoway-backtrack.mp4
/courses/RegSimbolica/videos/interpolate.mp4
/courses/RegSimbolica/videos/linesearch.mp4

Comparison

30 steps of steepest descent:

Method Generated α f(xk)

Backtracking 265 −4.83
Two-way 84 $-1.63
Interpolation 42 −35.62
Strong Wolfe 298 −35.65

54

Conjugated Gradient

Suppose we want to solve a linear system:

Ax = b

where A is symmetric and positive definite.

55

Symmetric Matrices

A = AT

Aij = Aji for every i, j

56

Positive Definite

xT Ax > 0

for any nonzero column vector x.

57

Positive Definite

Necessary conditions (but not sufficient):

1. Aii > 0 for all i

2. The element with the largest absolute value is in the diagonal
3. det(A) > 0

58

Conjugated Gradient

We can write this problem as a quadratic optimization:

f(x) = 1
2

xT Ax − bT x

They both share the same optima!

59

Conjugated Gradient

For this particular problem, the gradient function is the same as the residu-
als:

∇f(x) = Ax − b = r(x)

60

Conjugated Directions

Conjugated directions {p0, p1, . . . , pl} is the set of nonzero vectors such
that:

pT
i Apj = 0

for every i ̸= j.

61

Conjugated Directions

One important property of these conjugated directions is that, for an
optimization problem with x ∈ Rn and the conjugated directions
{p0, p1, . . . , pn−1} we can generate the sequence {xk} for k = [0, n − 1]
as:

xk+1 = xk + αkpk

αk = − rT
k pk

pT
k Apk

And, for this specific problem, it will converge to the optimal solution.

62

Conjugated Directions

We can see that clearly for a diagonal matrix A that forms an ellipsis with
its axes aligned with the coordinate directions.

As such, the coordinate directions are the conjugated directions.

63

Conjugated Directions

When A is not diagonal, the ellipsis is rotated and thus using the coordinate
directions will not work:

64

Conjugated Directions

We can change our problem by rotating the axes such that the ellipsis is
aligned to the coordinate directions.

x̂ = S−1x

S = [p0p1 . . . pn−1]

65

Conjugated Directions

Now the quadratic optimization problem becomes:

f̂(x̂) = 1
2

x̂T (ST AS)x̂ − (ST b)T x̂

66

Conjugated Directions

Notice that following what we have seen so far, when the Hessian matrix is
diagonal, each coordinate minimization determines one component of x∗.

So we can reach the optimal solution in n steps.

67

Conjugated Directions

Also notice that:

rk = Axk − b

xk+1 = xk + αkpkAxk+1 − b = A(xk + αkpk) − b

rk+1 = Axk − b + αkApk

rk+1 = rk + αkApk

68

Conjugated Directions

We noticed that rk is orthogonal to every search direction in the previous
steps (rT

k pi = 0).

This will be useful to determine the conjugated gradient method.

69

Conjugated Gradient

The main idea of conjugated gradient method is that we depart from an
initial direction p0 and generate the direction pk based only on pk−1.

In this algorithm, each direction pk is chosen as a linear combination of the
steepest descent direction −∇f(xk) and the previous direction.

pk = −rk + βkpk−1

70

Conjugated Gradient

The scalar βk is chosen such that pT
k−1Apk = 0:

pT
k−1A(−rk + βkpk−1) = 0

βkpT
k−1Apk−1 = rT

k Apk−1

βk = rT
k Apk−1

pT
k−1Apk−1

71

Conjugated Gradient

cg-basic x r p
| r == 0 = x
| otherwise =

let ap = mtxmul A p
alpha = - (dot r p) / (dot p ap)
xk = x + alpha * p
rk = mtxmul A xk - b
beta = dot rk ap / (dot p ap)
pk = - rk + beta * p

in cg-basic xk rk pk

72

Conjugated Gradient

We can implement a more efficient version if we notice that:

rT
k pk−1 = 0

pk = −rk + βkpk−1

αk+1 = − rT
k pk

pT
k Apk

αk+1 = −rT
k (−rk + βkpk−1)

pT
k Apk

αk+1 = rT
k rk

pT
k Apk

73

Conjugated Gradient

We can also simplify βk+1 as:

βk+1 =
rT

k+1rk+1

rt
krk

74

Nonlinear Conjugated Gradient

We can change the original CG method to support nonlinear optimization
with some small changes:

fletcher-reeves xk gradFk pk
| gradFk == 0 = xk
| otherwise =

let alpha = line-search xk pk
xk1 = xk + alpha * pk
gradFk1 = grad xk1
beta = dot gradFk1 gradFk1 / dot gradFk gradFk
pk1 = - gradFk1 + beta * pk

in fletcher-reeves xk1 gradFk1 pk1

fletcher-reeves x0 (grad xk) -(grad xk)

75

Nonlinear Conjugated Gradient

Another variation with a different choice of β is:

polak-ribiere xk gradFk pk
| gradFk == 0 = xk
| otherwise =

let alpha = line-search xk pk
xk1 = xk + alpha * pk
gradFk1 = grad xk1
beta = dot gradFk1 (gradFk1 - gradFk) / dot gradFk gradFk
pk1 = - gradFk1 + (max beta 0) * pk

in polak-ribiere xk1 gradFk1 pk1

polak-ribiere x0 (grad xk) -(grad xk)

76

BFGS

Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm is a quasi-
Newton method that departs from the Newton method that uses the inverse
of the Hessian to calculate the direction for the next iteration and replaces
it with an approximation of the inverse Hessian, recalculated at every step.

77

BFGS

Assuming the nonlinear objective-function f(x), let us call fk the evalua-
tion at the point xk. At this same point, we can create a quadratic model.

gk(p) = fk + ∇fT
k p + 1

2
pT Bkp

Bk is a symmetric positive definite matrix that is updated at every step.

78

BFGS

When p = 0, the approximation matches fk, ∇fk exactly. The minimiza-
tion of pk leads to:

∇gk(p) = 0

∇pfk + ∇fT
k ∇pp + ∇p

1
2

pT Bkp = 0

Bkp = −∇fk

pk = −B−1
k ∇fk

79

BFGS

With the optimized direction, we take the step:

xk+1 = xk + αkpk

choosing αk that satisfies Wolfe conditions.

80

BFGS

The main idea of the algorithm is that, after calculating xk+1 we calculate
Bk+1 considering that we will build a new quadratic approximation:

gk+1(p) = fk+1 + ∇fT
k+1p + 1

2
pT Bk+1p

assuming that ∇gk+1(−αkpk) = ∇fk.

81

BFGS

∇gk+1(−αkpk) = ∇fk

∇fk+1 − αkBk+1pk = ∇fk

Bk+1αkpk = ∇fk+1 − ∇fk

82

BFGS

Let us denote:

sk = xk+1 − xk

yk = ∇fk+1 − ∇fk

Bk+1sk = yk

This is called the secant equation.

83

BFGS

With the curvature condition (second Wolfe condition):

−pT
k ∇fk+1 ≤ −c2pT

k ∇fk

pT
k ∇fk+1 ≥ c2pT

k ∇fk

pT
k (∇fk+1 − c2∇fk ≥ 0

(xk+1 − xk)T (∇fk+1 − c2∇fk ≥ 0

We require that sT
k yk > 0 so that the calculation of Bk+1 always have a

solution.

84

BFGS

To determine an unique solution for Bk+1 we impose an additional condi-
tion:

min
B

∥B − Bk∥

st. B = BT , Bsk = yk

85

BFGS

The solution of this optimization problem is:

Bk+1 = (I − yksT
k

yT
k sk

)Bk(I − skyT
k

yT
k sk

) + ykyT
k

yT
k sk

86

BFGS

But we want to calculate the inverse of this matrix:

Hk = B−1
k

87

BFGS

We can calculate that with:

Hk+1 = (I − skyT
k

yT
k sk

)Hk(I − yksT
k

yT
k sk

) + sksT
k

yT
k sk

88

BFGS

The initial value H0 can be calculated :

• The inverse of the true Hessian
• The inverse of the approximated Hessian using finite difference
• The identity matrix

89

BFGS

-- assume * does multmtx when involving matrices
bfgs xk gradFk Hk eps

| norm gradFk < eps = xk
| otherwise =

let pk = - multmtx Hk gradFk
alpha = line-search xk pk
xk1 = xk + alpha * pk
gradFk1 = grad xk1
sk = xk1 - xk
yk = gradFk1 - gradFk
ys = yk.T * sk
Hk1 = (ident - sk * yk.T / ys) * Hk

* (ident - yk * sk.T / ys)
+ (sk * sk.T) / ys

in bfgs xk1 gradFk1 Hk1 eps

bfgs x0 (grad x0) (hess x0) eps

90

Calculating the Gradient and Hessian
of a Symbolic Model

Differentiating Symbolic Models

The optmizationmetods learned so far require the calculation of the gradient
and, sometimes, the Hessian of the function we want to optimize.

In nonlinear regression, we often provide the objective-function and a func-
tion that returns the gradient.

91

Differentiating Symbolic Models

But, in Symbolic Regression we do not have the knowledge of the symbolic
model a priori. As such we can approximate the derivatives or generate the
symbolic function of the derivatives.

92

Symbolic Derivatives

Let us assume the following symbolic function representation:

data SRTree val =
Var Int -- ^ index of the variables

| Const Double -- ^ constant value
| Uni Function val -- ^ univariate function
| Bin Op val val -- ^ binary operator

93

Symbolic Derivatives

We can easily determine the derivative wrt a variable dx as:

deriveBy :: Int -> SRTree -> SRTree
deriveBy dx t = case t of

(Var ix) -> if ix==dx then 1 else 0
(Const _) -> 0
(Uni f t) -> derivative f (eval t) * deriveBy dx t
(Bin Add l r) -> deriveBy dx l + deriveBy dx r
(Bin Sub l r) -> deriveBy dx l - deriveBy dx r
(Bin Mul l r) -> deriveBy dx l * eval r

+ eval l * deriveBy dx r
(Bin Div l r) -> (deriveBy dx l * eval r - eval l * deriveBy dx r)

/ eval r ** 2
(Bin Power l r) -> eval l ** (eval r - 1)

* (eval r * deriveBy dx l
+ eval l * log (eval l) * deriveBy dx r)

94

Symbolic Derivatives

In this function derivative is the derivative of a function f and eval
evaluates a subtree.

With this algorithm, the gradient is simply the list of symbolic expressions
generated as [deriveBy dx t | dx <- [1 .. p]].

The Hessian matrix can be calculated as the second order derivative
[deriveBy dy (deriveBy dx t) | dx <- [1 .. p], dy <-

[1 .. p]].

95

Symbolic Derivatives

The main problem with this approach is that whenever we want to
calculate the gradient (or Hessian) we have to traverse the symbolic trees
multiple times, which can be computationally intensive depending on the

size of the expression.

96

Symbolic Derivatives

Also, the derivative of an expression may be larger than the original expres-
sion! Let us use this expression as an example:

f(x) = (x1x2 sin x3 + ex1x2)/x3

To evaluate this expression we need a total of 7 operations.

97

Symbolic Derivatives

The partial derivatives of this expression are:

∂f

∂x1
= ((x2 sin x3 + x2ex1x2)x3 − (x1x2 sin x3 + ex1x20)/x2

3

∂f

∂x2
= ((x1 sin x3 + x1ex1x2)x3 − (x1x2 sin x3 + ex1x20)/x2

3

∂f

∂x3
= ((x1x2 cos x3)x3 − (x1x2 sin x3 + ex1x2)1)/x2

3

In this case we have 17, 17, 13 operations respectively, or 47 in total.

98

Symbolic Derivatives

If we simplify this expression we can reduce the total evaluations to 24:

∂f

∂x1
= (x2(sin x3 + ex1x2))/x3

∂f

∂x2
= (x1(sin x3 + ex1x2))/x3

∂f

∂x3
= ((x1x2(cos x3)x3 − sin x3) + ex1x2)/x2

3

But this requires the additional step of simplification.

99

Finite Difference

A common formula for calculating an approximation of a derivative is given
by the finite difference:

∂f

∂xi
(x) ≈ f(x + ϵei) − f(x)

ϵ

where ei is the vector with 1 at the i-th position and 0 in every other position.
As ϵ approximates 0 it will increase the accuracy of the approximation.

100

Finite Difference

This approximation is limited by the round-off errors of the floating-point
representation. We can improve the previous formula by doing:

∂f

∂xi
(x) ≈ f(x + ϵei) − f(x − ϵei)

2ϵ

But now it requires two evaluations per coordinate.

101

Finite Difference

For our example function at the point [1, 1, 1] we have:
True grad: [3.55975281 3.55975281 -3.01945051]

Finite diff 1: Finite diff 2
eps = 1.00e-01: [3.70031294 3.70031294 -2.78399006] [3.56428555 3.56428555 -3.04661284]
eps = 1.00e-02: [3.57338964 3.57338964 -2.99372954] [3.55979812 3.55979812 -3.01971941]
eps = 1.00e-03: [3.56111241 3.56111241 -3.01685448] [3.55975327 3.55975327 -3.0194532]
eps = 1.00e-04: [3.55988873 3.55988873 -3.01919066] [3.55975282 3.55975282 -3.01945053]
eps = 1.00e-05: [3.5597664 3.5597664 -3.01942452] [3.55975281 3.55975281 -3.01945051]
eps = 1.00e-06: [3.55975417 3.55975417 -3.01944791] [3.55975281 3.55975281 -3.01945051]
eps = 1.00e-07: [3.55975295 3.55975295 -3.01945025] [3.55975281 3.55975281 -3.01945051]
eps = 1.00e-08: [3.55975285 3.55975285 -3.01945042] [3.55975283 3.55975283 -3.01945049]
eps = 1.00e-09: [3.55975338 3.55975338 -3.01945047] [3.55975294 3.55975294 -3.01945069]
eps = 1.00e-10: [3.55975693 3.55975693 -3.01944691] [3.55975249 3.55975249 -3.01944914]

In this example, ϵ = 10−7 can already return a good approximation.
Assuming that we already have f(x) evaluated, the first finite difference

takes 7 operations and the second 14.

102

Finite Difference

The second-order derivative can be similarly approximated as:

∇2f(x) ≈ ∇f(x + ϵei) − ∇f(x)
ϵ

∇2f(x) ≈ ∇f(x + ϵei) − ∇f(x − ϵei)
ϵ2

103

Finite Difference

For our example function at the point (1, 1, 1) we have:
True hessian: [2.71828183 2.71828183 5.19743003]

Finite diff 1: Finite diff 2
eps = 1.00e-01: [3.00667033 3.00667033 3.89792931] [2.72735486 2.72735486 5.4243967]
eps = 1.00e-02: [2.7456239 2.7456239 5.03983754] [2.71837244 2.71837244 5.19960996]
eps = 1.00e-03: [2.7210017 2.7210017 5.18133549] [2.71828273 2.71828273 5.19745182]
eps = 1.00e-04: [2.7185536 2.7185536 5.19581707] [2.71828186 2.71828186 5.19743025]
eps = 1.00e-05: [2.7182967 2.7182967 5.19727372] [2.71828338 2.71828338 5.19743359]
eps = 1.00e-06: [2.71871414 2.71871414 5.19628784] [2.7184921 2.7184921 5.19750909]
eps = 1.00e-07: [2.62012634 2.62012634 5.2846616] [2.73114864 2.73114864 5.20694599]
eps = 1.00e-08: [4.4408921 4.4408921 -8.8817842] [5.55111512 5.55111512 5.55111512]
eps = 1.00e-09: [-888.1784197 -888.1784197 444.08920985] [111.02230246 111.02230246 222.04460493]
eps = 1.00e-10: [-44408.92098501 -44408.92098501 -44408.92098501] [22204.4604925 22204.4604925 11102.23024625]

In this case we can see that with a small ϵ the results can diverge.

104

Automatic Differentiation

Automatic Differentiation is a set of techniques the exploits computational
representation of a function to produce the analytical values of a derivative.

These techniques have been used extensively in Deep Learning literature
to improve the overall performance of gradient based optimization of large
neural networks.

105

Automatic Differentiation

It is founded by to important concepts:

• Any function can be split into a sequence of simple elementary
operations

• The chain rule of derivatives

106

Automatic Differentiation

There are two basic modes of operation:

• forward mode: we evaluate the function graph represeantion from
the root nodes to the leaf

• reverse mode: we perform a two pass, first evaluating the forward
step and then back to the roots

107

Automatic Differentiation

Let us exemplify with the expression:

f(x) = (x1x2 sin x3 + ex1x2)/x3

108

Automatic Differentiation

x1

x2

x3

x4

x5

x6

x7 x8 x9

∗

sin

exp

∗ + /

109

Automatic Differentiation

This computation graph is a directed acyclic graph in which the value of a
node can be calculated by the operation applied to the values of its parents
nodes.

The flow of the computation is from left to right, also known as forward
sweep.

110

Forward mode

The main idea of the forward mode is to calculate the evaluation of the
function and the gradient vector in a single forward sweep.

In this mode we calculate the directional derivative ∇f(x)T p in the direc-
tion p.

111

Forward mode

Let us denote the directional derivative at xi as:

Dpxi = (∇xi)T p =
∑
j=1

n
∂xi

∂xj
pj

where n is the number of variables in the objective-function and i varies
from 1 to the number of intermediate computation in the problem (in our
example we have 9).

112

Forward mode

Notice from our graph that whenever we know the value of any xi we can
immediately calculate the value of Dpxi using the chain rule.

113

Forward mode

For example, let’s use p = e1 and x = [1, 1, 1]:

x1 = 1
Dpx1 = 1 + 0 + 0 = 1

x2 = 1
D − px2 = 0 + 0 + 0 = 0

x3 = 1
D − px3 = 0 + 0 + 0 = 0

114

Forward mode

Going forward in our graph we have (since p is 0 for the components 2, 3
we will ommit this part of the calculation):

x4 = x1x2

Dpx4 = ∂x4
x1

= x2

x5 = sin x3

Dpx5 = ∂x5
x1

= 0

x6 = ex4

Dpx6 = ∂x6
x1

= Dpx4ex4 = x2ex4

and so on…
115

Forward mode

If we repeat this procedure for every directional vector e we obtain the full
gradient vector.

Notice that this can be done in parallel during the forward sweep.

116

Dual Numbers

A popular implementation of the forward mode uses the idea of dual num-
bers that is capable of storing the value of an expression together with the
derivatives.

117

Dual Numbers

Dual Numbers were introduced in2 and, in the context of automatic differ-
entiation it can be used to store the derivatives together with the evaluation
of the function.

2Clifford. “Preliminary sketch of biquaternions.” Proceedings of the London
Mathematical Society 1.1 (1871): 381-395.

118

Dual Numbers

A dual number can be represented as:

a + bϵ

where a is the evaluation, b is the derivative, with the property that ϵ2 = 0.

119

Dual Numbers

The dual numbers have the following properties:

(a + bϵ) + (c + dϵ) = (a + c) + (b + d)ϵ
(a + bϵ)(c + dϵ) = (ac) + (ad + bc)ϵ

f(a + bϵ) = f(a) + bf ′(a)ϵ
f(g(a + bϵ)) = f(g(a)) + bf ′(g(a))g′(a)ϵ

120

Dual Numbers

For multivariate problems we turn ϵ into a vector holding the derivatives of
each variable:

a + bϵ1 + cϵ2 + dϵ3

121

Dual Numbers

forwardMode x tree =
case tree of

Var ix -> (x[ix], [if iy==ix then 1 else 0 | iy <- [1..p]])
Const v -> (v, [0 | _ <- [1..p]])
Uni f t -> let (v, e) = forwardMode x t

in (f v, f' v * e)
Bin op l r -> let (v1, e1) = forwardMode x l

(v2, e2) = forwardMode x r
in (v1 `op` v2, binDeriv op v1 e1 v2 e2)

binDeriv Add v1 e1 v2 e1 = e1 + e2
binDeriv Sub v1 e1 v2 e1 = e1 - e2
binDeriv Mul v1 e1 v2 e1 = v2*e1 + v1*e2
binDeriv Div v1 e1 v2 e1 = e1/v2 - v1*e2/v2**2

122

Reverse Mode

In reverse mode we first make a forward sweep to calculate the partial val-
ues of each node. We then create an intermediate structure in the process
holding these partials in a stack-like structure.

Once we have this structure, we can do a reverse sweep accumulating and
merging a vector of derivatives as we traverse to the left.

123

Reverse Mode

1

2

π
2

2

1

e2

2 2 + e2 4+2e2

π

p(4, 1) = 2

∗
p(4, 2) = 1

sin
p(5, 3) = 0

exp
p(6, 4) =

e 2

p(7, 4) = 1

∗
p(7, 5) =

2

p(8, 6) = 1

+
p(8, 7) =

1

p(9
, 8)

=
2

π

/

(−8 − 4e2)/π2

124

Reverse Mode

data Stack x e = End x | Stack x e | Branch x e e

unstack (End x) = x
unstack (Stack x _) = x
unstack (Branch x _ _) = x

125

Reverse Mode

forwardStep x tree =
case tree of

Var ix -> End (x[ix])
Const v -> End v
Uni f t -> let t' = forwardStep x t

in Stack (f (unstack t')) t'
Bin op l r -> let l' = forwardStep x l

r' = forwardStep x r
in Branch (unstack l' `op` unstack r') l' r'

126

Reverse Mode

-- assume a global mutable array dxs starting with 0
reverseMode x tree (dx, stack) =

case tree of
Var ix -> set dxs ix (dxs[ix] + dx)
Const v -> return
Uni f t -> let v = unstack stack

in reverseMode x t (dx * f' v, tail stack)
Bin op l r -> let (l', r') = branches stack

(vl, vr) = unstack stack
(dl, dr) = binDeriv op vl vr

in do reverseMode x l (dx * dl, l')
reverseMode x r (dx * dr, r')

127

Forward vs Reverse modes

The choice between forward and reverse modes depend on what kind of
symbolic models and likelihood functions we will have to optimize.

• For functions f : Rn → R, reverse mode is faster.
• For functions f : Rn → Rm, forward mode can be faster when m is
large.

• Reverse mode needs an intermediate structure to store the partial
results.

• Reverse mode can be greatly improved if the computational graph is
a tree.

128

Calculating the Hessian matrix

We can use this same procedures to calculate the hessian matrix. For
forward mode we will change the calculation to the directional derivative
pT (∇2xi)q where p, q are vectors from e.

The derivation rules are analogous so, for example, if xi = xj + xk the
second order derivative wrt x1x2 is:

De1e2xi = De1e2xj + De1e2xk

129

Calculating the Hessian matrix

If xi = f(xj) we have:

De1e2xi = f ′′(xj)De1xjDe2xj + f ′(xj)De1e2xj

130

Calculating the Hessian matrix

Notice that since the Hessian is symmetric, we only need to calculate either
the lower or upper triangle.

We can do a similar adaptation to reverse mode by first using forward mode
to calculate the evaluation and gradient at every node and then performing
the reverse step assembling the Hessian matrix.

Calculating the Hessian matrix, even with automatic differentiation, can be
expensive!

131

Next lecture

• Model Validation

132

Acknowledgments

133

	Nonlinear Optimization
	Optimization Algorithms
	Line Search Methods
	Calculating the Gradient and Hessian of a Symbolic Model

