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Model Validation

As already stressed throughout this course, there are three main approaches
for nonlinear regression:

• Using an overparameterized generic model (opaque model).
• Manually crafting the nonlinear model.
• Using Symbolic Regression to find a nonlinear model with as few
parameters as possible.
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Model Validation

While crafting the model using first principles, you may have some prop-
erties that you want to enforce into your model, either because of some
requirements or from a prior knowledge about the behavior of the system.

In this situation, the practitioner can enforce those using their own expertise.
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Model Validation

For example, due to EU regulations1, the practitioner will create a model
that will allow them to debug how the output is generate in a clear manner.
Also, they may want to ensure fairness in the predictions.

1(https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-
intelligence-act-meps-adopt-landmark-
law)[https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-
intelligence-act-meps-adopt-landmark-law]
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Model Validation

This is usually a problem for opaque models that are often hard to debug
and not flexible enough to enforce some propeties of interest.

In the current literature, there are some techniques that can extract informa-
tion from opaque models to have a better understanding. But this may not
be enough in practice.
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Model Validation

With the vanilla symbolic regression, you have the possibility of finding
a model that meets all your requirements. To increase the probability of
finding the correct model, you’ll need:

• Noiseless data.
• Representative data.
• Luck
• A well calibrated SR algorithm.
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Model Validation

With the vanilla symbolic regression, you have the possibility of finding
a model that meets all your requirements. To increase the probability of
finding the correct model, you’ll need:

• Noiseless data.
• Representative data.
• Luck
• A well calibrated SR algorithm.

We can only afford the last one!
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Model Validation

Another important motivation for model validation is that, depending on the
hyper-parameters, the SR algorithm can favor large and overparameterized
models that will have a high goodness-of-fit without the remaining desider-
ata.
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Example of desiderata

Some example of objectives beyond the goodness-of-fit2 are:

• The ability to understand and explain model behavior
• Scientific plausibility of the model
• Whether the model is generalizable and capable of extrapolation
• Boundedness and safe operation under all circumstances
• Efficiency of calculating predictions or computational effort required
for training the model

2Gabriel Kronberger, Bogdan Burlacu, Michael Kommenda, Stephan M. Winkler, and
Michael Affenzeller. Symbolic Regression. tbr.

8



Example of desiderata

Besides those, we may also want a model that:

• Ensures a fair inference to different classes of the sample.
• Behaves according to pre-established norms.

9



Ability to understand and explain model behavior

In the beggining of the course, it was clear that a linear model is easy to
understand:

• With every unitary change in x we observe a change proportional to
β in the outcome.

• Even if we have a linear model with non-linear features, they can
have physical meaning. E.g., v = s/t, the inverse interaction of
displacement and time gives us the average velocity.
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Ability to understand and explain model behavior

When we have a nonlinear regression model, these interepretations are not
as straightforward:

f(x; θ) = θ1x

θ2 + x
,

The association between the input variable and the outcome is not easily
understood.
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Ability to understand and explain model behavior

We can try to understand the behavior with a plot for different values of θ:
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Ability to understand and explain model behavior

0 2 4
0

2

4

• This model has a saturation
value close to θ1

• The higher the value of θ2, the
slower the speed to reach the
saturation

• When x = θ2,
f(x; θ) = 0.5θ1, so it is the
point where we reach about
half saturation

• There is an undefined
behavior at x = −θ2
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Ability to understand and explain model behavior

Having the context of the model can help gain additional insights. This par-
ticular model can represent the Michaelis–Menten kinetics that describes
the reaction rate (f(x; θ)) to the concentration of a substrate (x).

Knowing the phyisical meanings of θ will give us insight when fitting this
model for different enzymes.

We can see that, once we contextualize the model and add expert knowl-
edge, we can gain insights from nonlinear models as well, as long as their
parameters are meaningful in our context (thus, minimize the number of pa-
rameters is desired).
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Ability to understand and explain model behavior

In short, inspecting themodel for the ability of understanding and explaining
can be done by:

• Contextualizing the model
• Applying expert knowledge
• Plotting the behavior of the function with different parameter values

Additional tools will be given in later lectures when we talk about explain-
ability.
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Scientific plausibility of the model

Related to the previous desiderata, scientific plausibility refers to whether
the model:

• Behaves similarly to the observed phenomena.
• Is correct w.r.t. a dimensional analysis (or whether all meta-features
are dimensionless)

• Possesses a phyisical meaning
• Does not misbehave

This can be inspected through visual plots and expert knowledge.
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Whether the model is generalizable and capable of extrapolation

The SR model is fitted on a limited data set that does not necesseraly cap-
tures the whole domain.
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Whether the model is generalizable and capable of out-of-domain ex-
trapolation

To verify whether the SR model is well behaved outside the domain we can:

• Plot the model outside the training range (works well up to 2
dimensions)

• Assert some desirable properties (monotonicity, concavity,
periodicity; but not easy to assert)

• Collect additional points outside the training domain (may not be
possible or it may cost too much)

This is still an open problem and the solution depends on what kind of in-
formation we have available.
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Boundedness and safe operation under all circumstances

The generated model may be a partial function or misbehave at certain ex-
tremal points.

For example, if we have a division f(x)/g(x), it will be undefined at
g(x) = 0. This may create a problem if we are using this model in practice.
What should we return if that happens?

Sometimes we can observe an exponential growth at the extrema of the
domain of x, this can reflect on an increased error of the model predictions
close to those points.
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Boundedness and safe operation under all circumstances

First of all, we must confirm if such model is accceptable:

• Is there any value of x in which f(x; θ) is undefined or unbounded?
• Even if it is bounded, does it show an undesirable behavior (e.g.,
exponential growth)?

• Do we have some means to treat such errors?
• If we want to fit this same model into different data, will it
misbehave for a certain (x; θ)?
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Boundedness and safe operation under all circumstances

One solution is to replace the operator set with protected operators:

• Returning a default value on error (e.g., division by 0 will return 1)
• Using composition of operators (e.g., replace log by log ◦ abs)
• Using alternative operators that behave similarly to the original (e.g.,

AQ(x, y) = x/
√

1 + x2 ≈ x/y)
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Boundedness and safe operation under all circumstances

Wecan also evaluate the partiality of the expression using interval arithmetic
if we know the domain of x. In this case, we can penalize or even discard
functions that are unsafe for that particular domain.

This can be a good compromise as we can still use the original operators but
do not discard them entirely.
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Efficiency of calculating predictions or computational effort required for
training the model

In some situations, the efficiency of the prediction or even to obtain the
fitted model is important:

• Limited time or computational budget
• Real-time system
• Data set is too large, making the evaluation of large expressions too
costly
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Efficiency of calculating predictions or computational effort required for
training the model

These objectives influence the choice of operator set (addition costs much
less than calculating a trigonometric function), the limits of the expression
size, the algorithm implementation, and even the search algorithm.

In some situations a populational search may not be the best choice, even
with the cost of generating a worse solution.
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Ensures a fair inference to different classes of the sample.

When the model can have a social impact, we need to ensure that the model
will not commit a prediction error that negatively affects people’s life:

• Arrest someone by mistake
• Misdiagnose a patient
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Ensures a fair inference to different classes of the sample.

Even worse if those mistakes occur due to bias in the data. We have alread
cases of:

• ML models increasing the prediction of fellony for black and latin
american people (https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing)

• Learning neo-nazi speech in a conversation bot
(https://www.technologyreview.com/s/610634/microsofts-neo-nazi-
sexbot-was-a-great-lesson-for-makers-of-ai-assistants/ )
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Ensures a fair inference to different classes of the sample.

Being unfair is not a fault of SR algorithm, specially this is not a (easily)
measurable obejctive.

But, depending on the generated model, SR can at least facilitate the detec-
tion of any unfairness. As such, the practitioner should pay attention certain
protected variables: genre, etnicity, age, home address, and any other vari-
able that correlates to those

We can eliminate these variables from the dataset before generating the
model. A better solution is to inspect the model after it is generated to see
how it uses such variable.
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Ensures a fair inference to different classes of the sample.

Example. given a model that suggest treatment for a patient with a certain
disease. We should investigate the behavior of the model for certain misbe-
haviors:

• Holding everything equal, if we change race in the input variable,
does it change the recommendation for better treatments?

• Does the dosage of a certain treatment varies with different race? If it
does, is this variation explained and supported by any study? (e.g., a
certain genotype is more resistant to treatment)
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Ensures a fair inference to different classes of the sample.

To alleviate this issue during the model search, we can incorporate fairness
measures into the objective by either using multi-objective or applying a
penalization strategy.

We can measure fairness and equity as:

• Statistical parity: each group has a distribution of responses
proportional by their representativiness

• Inequality impact: whether the average response for two groups are
approximately the same

• Opportunity equality: whether all groups have the same probability
of a positive outcome

• Calibration: whether the false positive rates are equal among the
groups

• Counterfactual equity: given a positive outcome, this is unaffected
when changing the protected variables
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Visual tools

The plots regarding the predictions and residuals can be insightful and
provide a tool for model inspection. From these plots we can understand
whether the model meets our expectations and whether there is any
unexpected behavior.
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Noise variance plot

One example of a plot is the predicted values against the dependent variable
as observed in the data. To illustrate this and the next plots, we will fit our
simulated grade dataset with PyOperon, PySR and TIR:

1 regs = [SymbolicRegressor(),
2 TIRRegressor(100, 100, 0.3, 0.7, (-3, 3), transfunctions='Id',
3 alg='MOO'),
4 PySRRegressor(binary_operators=["+", "*"], unary_operators=[])
5 ]
6 for i in range(3):
7 regs[i].fit(x.reshape(-1,1),y)
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Noise variance plot

We can check the noise variance with:

1 _,axs = plt.subplots(1,3, figsize=(15,5), sharey=True)
2 name = ['Operon', 'PySR', 'TIR']
3 for i in range(3):
4 axs[i].plot(y, regs[i].predict(x.reshape(-1,1)), '.', color='black',
5 markersize=15)
6 axs[i].set_xlabel('y')
7 axs[i].set_ylabel('f(x)')
8 axs[i].set_title(name[i])
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Noise variance plot

A perfect model would have all the points in the 45 degrees diagonal.
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Noise variance plot

We can see from these plots that none of the models returns a satisfactory
result. Also, we can see that all of them have a bias in mispredicting

grades below 5 (usually for a higher grade).
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Q-Q plot

Another important plot is the quantile-quantile plot (Q-Q plot) that plots
the assumed error distribution of the data matches the distribution of the
residuals of the model.

To make the Q-Q plot, we calculate the residuals of our model, sort them
in increasing order, and plot each point against the inverse of the

cumulative density function of the assumed distribution.
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Q-Q plot

(qqplot assumes normal distribution as the default)

1 import statsmodels.api as sm
2
3 _,axs = plt.subplots(1,3, figsize=(15,5), sharey=True)
4
5 for i in range(3):
6 sm.qqplot(regs[i].predict(x.reshape(-1,1))[:,0]-y, line ='45',
7 ax=axs[i])
8 axs[i].set_title(name[i])
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Q-Q plot

We can see from these plots that none of the models matches the expected
distribution for the residuals.
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Residuals plot

Another interesting plot is the residuals plots in which we plot a choice of
xi against f(x) and the residuals:

1 import statsmodels.api as sm
2
3 _,axs = plt.subplots(1,3, figsize=(15,5), sharey=True)
4
5 for i in range(3):
6 axs[i].plot(x, regs[i].predict(x.reshape(-1,1))[:,0] - y, '.',
7 color='blue', alpha=0.3, markersize=5)
8 axs[i].plot(x, regs[i].predict(x.reshape(-1,1)), '.', color='red',
9 markersize=15)
10 axs[i].set_xlabel('x')
11 axs[i].set_ylabel('f(x) - y')
12 axs[i].set_title(name[i])
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Residuals plot

These plots show that all of these models have an error ranging from −4
to 4 but mostly concentrated on neagtive residuals. This means it tends to

understimate the true value.
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Residuals plot

Also, we can see that Operon created a model with some discontinuities
(possibily because of division) and TIR chose a linear model.
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Next lecture

• Model Selection
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