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Model Selection

In previous lectures, we explored different SR algorithms and their many
hyper-parameters.

The choice of the best hyper-parameters can be essential to generate a model
that best describes the data generating process.

Choosing the best set is not trivial and there is no one-fits-all.
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Model Selection

In the end, we have to make experiments with different SR algorithms and
different hyper-parameters and select the best model somehow.

Even thoughwe have a well-defined optimization criteria that we use during
the search process, this criteria may be insufficient to capture the whole
desiderata or may be biased towards the choice of training sample.

Also, in aMulti-objective setting, the algorithmmay return a set of trade-off
solutions. Should we pick the simplest one? The most accurate?
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Model Selection

To make this choice, we first need to establish the goal of the experiment:
statistical inference or prediction.

With statistical inference we want to understand the nature of data gener-
ating process, leading to a correct characterization of the sources of uncer-
tainties and providing an explanation for the data.

The prediction objective consists of predicting unseen observations based
on the current observations we have collected.
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Hold-out set

A simple approach is to create a hold-out set, in short we split the data into
a training set and a test set.

In this approach, we use the training set to search for or fit the model, while
the test set is used to evaluate the final model.

The main idea is that, using the training set to evaluate the model holds a
bias toward the search and optimization process. Having a separate set for
evaluation answers the question “What is the expected performance of this
model when applied to unseen data”.
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Hold-out set

Notice that if we also want to determine the best hyper-parameters for the
algorithm, we may split the training data even further as a training and val-
idation sets.

In this scenario, we use the training set for the search and fitting, and the
validation to evaluate whether that specific hyper-parameter is expected to
return a good performing model.
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Hold-out set

In GP-SR we can go even deeper and split the set once more to make sure
that the fitness of the solution is unbiased.

These choices all depend on the data availability, since each splitting de-
mands a large enough data set so that we have enough data available for the
fitting process.

The ratio of split also depends on howmany data points we have, a common
setting for medium to large data is 70-20-10 for training, validation, and test.

As a rule-of-the-thumb for linear regression, it is desirable to have at least 10
data points for every parameter in the model. But, if possible, it is desirable
to have 100 data points for each parameter.
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Cross-Validation

Thinking of a classification problem, using a simple training-test split may
generate:

3 1 4 0 Spam
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
5 3 0 0 Spam
5 3 0 0 Ham
1 1 0 2 Ham
1 1 0 2 Ham

We cannot guarantee that either the training or the test sets are representa-
tive.
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Cross-Validation

If the training set is not representative, the model will be fitted with a bias
towards the represented region.

If the test set is not representative, the choice of model will be of a biased
model towards the represented region.

To avoid this situation we can use the k-fold cross-validation.
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Cross-Validation

In k-fold cross-validation we split the data into k sets of (approximately)
equal size andwe run the fitting and evaluation procedure k times, each time
using the combination of k − 1 sets as the training data and the remaining
split as the test set.

After repeating the experiment k times we apply an aggregation function
into the performance measurements and choose the model that maximizes
the aggregated performance. For example, we can calculate the average R2

of the fitted models in k different settings.
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Cross-Validation

k = 4, experiment 1:
3 1 4 0 Spam
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
5 3 0 0 Spam
5 3 0 0 Ham
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Cross-Validation

k = 4, experiment 2:
3 1 4 0 Spam
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
5 3 0 0 Spam
5 3 0 0 Ham
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Cross-Validation

k = 4, experiment 3:
3 1 4 0 Spam
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
5 3 0 0 Spam
5 3 0 0 Ham
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Cross-Validation

k = 4, experiment 4:
3 1 4 0 Spam
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
1 1 0 2 Ham
5 3 0 0 Spam
5 3 0 0 Spam
5 3 0 0 Ham
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Cross-validation

Some special cases:

• k = 1 there is no split
• k = 2 we split the data in half and performs two experiments
• k = n we split the data in such a way that we get only a single test
example for each experiment.
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Leave-one-out

When k = n, the same size as the number of samples, we have the Leave-
one-out technique.

This provides amuch less biased estimation of the performance of themodel
on unseen observations.

But, if n is large, the runtime may be prohibitive (chiefly in populational
SR), but it can be reasonable for smaller datasets.
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Creating the final model with Cross-Validation

Once you choose the model using cross-validation technique, it is common
to refit the model using the entire data to generate a better fit.

An alternative approach is to create a model as the ensemble of the k fitted
models where the prediction is the average of the predictions of each model.
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Information Theoretic Criterion



Akaike’s Information Criterion

Akaike Information Criterion (AIC) was created by Hirotsugu Akaike to
measure the relative amount of information lost when choosing a model.

As already stated, we do not expect that the model will describe the data
exactly, since we have many possible sources of uncertainties.

This quantity is based on the likelihood of the model and the number of
adjustable parameters.
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Akaike’s Information Criterion

Given the maximum likelihood estimate L̂ of a model with k parameters,
AIC is calculated as:

AIC = 2k − 2 ln L̂
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Akaike’s Information Criterion

Since we’ve been working with the negative log-likelihood, assuming n̂ll
as the minimum estimate of the nll:

AIC = 2(k + n̂ll)

This is a minimization criteria, the smaller the number of parameters or the
nll, the better. Intuitively, it will prefer more accurate models if they are not
overparameterized.
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Akaike’s Information Criterion

This criteria estimates the Kullback-Lieber divergence between the model
and the true generator function (if that was ever known). But, if the number
of observations n is small, it requires some correction:

AICc = AIC + 2k2 + 2k

n − k − 1

This correction is valid if the model is univariate and linear following a
normal distribution. Adapting to other scenarios is difficult.
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Bayesian Information Criterion

Gideon E. Schwarz proposed the Bayesian Information Criterion (BIC)
including a penalization for the number of observations:

BIC = k ln n − 2 ln L̂
BIC = k ln n − 2n̂ll
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Bayesian Information Criterion

Compared to AIC, BIC will penalize the number of parameters weightd by
the number of observations. The more observations, it will prefer even less
parameters.

This comes in hand with the desiderata for SR in which we want a sufficient
number of parameters to fit our data but not too many.

Like with AIC, this is a good approximation provided we have a large
enough dataset.
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Minimum Description Length Principle

As mentioned in the previous lectures, a regression model is a summariza-
tion of our data. When proposing a model for inference, we want it to ac-
curetaly while being the most compact.

Viewing this task as a data compression, we want to find a compression
model that can recover the that as best as possible but using the least infor-
mation possible.

This principle is capture by theMinimum Description Length (MDL).
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Minimum Description Length Principle

A recent paper1 proposed how to calculate MDL for SR. Their idea was that,
given the data D and the functional hypothesis H , the codelength L of the
data can be decomposed into:

L(D) = L(H) + L(D | H)

where L(H) penalizes complex hypothesis and L(D | H) is the accuracy
of the hypothesis for that data.

1Bartlett, Deaglan J., Harry Desmond, and Pedro G. Ferreira. “Exhaustive symbolic
regression.” IEEE Transactions on Evolutionary Computation (2023).
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Minimum Description Length Principle

Using this separation we can describe both AIC and BIC:

L(H)AIC = 2k

L(D | H)AIC = 2n̂ll
L(H)BIC = k ln n

L(D | H)BIC = 2n̂ll
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Minimum Description Length Principle

Looking at the extremes, if we have L(H) = 0, we possibly have L(D |
H) = L(D) returning a very large error. Likewise, a very small error will
lead to a very high model complexity.
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Minimum Description Length Principle

L(D | H) for SR is the minimum estimate of the negative log-likelihood
for the model H .

The description length of the model L(H) was split into two terms: the
functional part and the parameter part.
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Minimum Description Length Principle - Functional complexity

The hypothesis H describes a compressed data D, in order to retrieve the
data we must transmit H in order to decompress the information.

AssumingH is written as an expression tree with k nodes. Then, we need to
transmit k blocks of information each one containing the information about
the operator or operand being transmitted.

If we have n operators in our set, we can represent this information using
ln (n) nats, thus requiring k ln(n) in total.

Observation: we are using nats since we are already calculating the natural
log of the likelihood, but we could also use bits (log2) or dits (log10).
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Minimum Description Length Principle - Parameter complexity

Although parameters is also a parte of the symbols set, wemust also transmit
their values. Assuming a parameter with value θi and a precision 1/∆i, we
need ln(|θi|/∆i) + ln(2) nats to transmit its value. The last term captures
the sign of the value.

Additionally, if we allow integral constant values in the expression (e.g.,
exponents, or as part of the simplification), we must add ln(c) nats of infor-
mation for every constant.
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Minimum Description Length Principle - Parameter complexity

Setting the parameter representation to a lower precision (i.e., increasing
∆i) will likely reduce the precision of the maximum likelihood estimate,
since the optimal parameter values may not be representable.

After finding ∆i that minimizes the impact in the loss function, we have a
parameter complexity of:

1
2

ln (Iii) + ln(|θi|) − 1
2

ln(3)

where Iii is the i-th diagonal of the fisher matrix.
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Minimum Description Length Principle

So we have:

MDL = n̂ll + k ln n − p

2
ln 3 +

∑
j

ln(cj) +
p∑

i=1

1
2

ln (Iii) + ln(|θi|)
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Using Model Selection

We must be aware that there no model selection criteria should be faced as
an absolute truth. In fact, they can diverge in which model is the best.

The choice of which criteria to use depends on the number of observations,
parameters, uncertainties, and how much accuracy is more important than
interpretability.

A better use of such measures is to select a set of probable models and vali-
date using one of the observations depicted in the previous lecture.
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Next lecture

• Model Simplification
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