

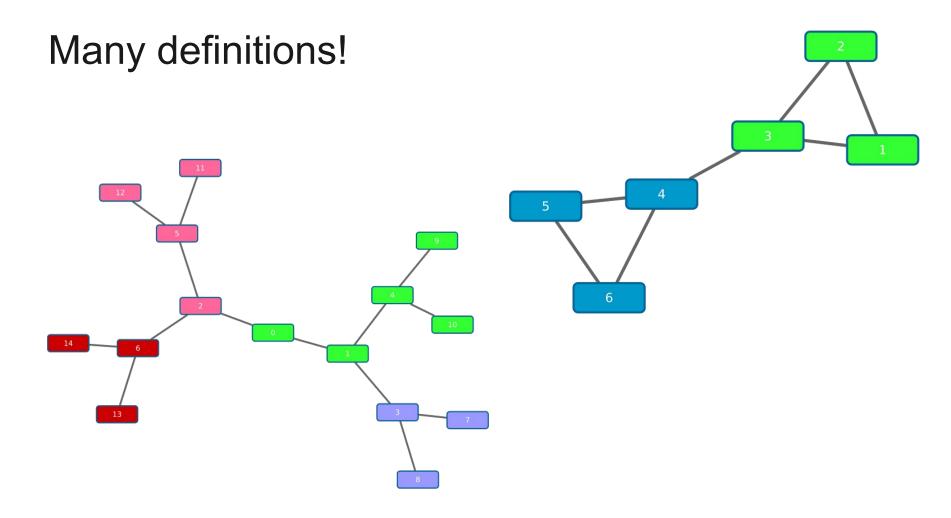
UNICAMP

A Flexible Fitness Function for

Community Detection in Complex Networks

Fabrício Olivetti de França and Guilherme Palermo Coelho Universidade Federal do ABC / Universidade Estadual de Campinas

What is a community?



How to find a community

One way to find a community is to formulate it as an optimization problem.

Use any suitable optimization algorithm available.

Modularity

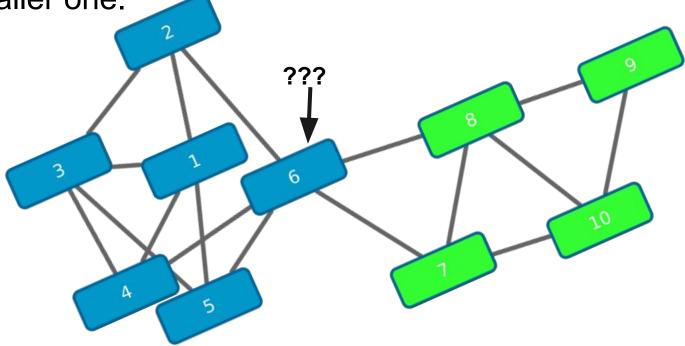
A common objective-function is the Modularity:

$$Q = \sum_{i} (e_{i,j} - (\sum_{j} e_{i,j})^2)$$

where $e_{i,j}$ is the fraction of edges connecting community i to community j.

Modularity

If a node has 3 edges connecting it to community *i* and 2 edges to a smaller community *j*, it will be assigned to the larger community, regardless of its contribution to the smaller one.



FLEX: A Flexible Fitness Function

Let's define FLEX for a given partitioning **p**:

$$FLEX(p) = \frac{1}{|V|} \sum_{c \in p} CC(c)$$

where CC(c) is the contribution of community c.

The community contribution is calculated as:

$$CC(c) = \sum_{i \in c} LC(i, c) - \frac{|c|^{\gamma}}{|V|}$$

where:

LC(i,c) is the contribution of node i to community c γ is the importance of having smaller communities.

LC(i,c) is defined as:

$$LC(i,c) = \alpha * \triangle(i,c) + (1-\alpha) * N(i,c) - \beta * \wedge (i,c)$$

 Δ (i,c): transitivity of i on c by transitivity of i N(i,c): neighbors of i in c by neighbors of i \wedge (i,c): # of open triangles with i in c by # of open triangles with i

LC(i,c) is defined as:

$$LC(i,c) = \alpha * \triangle(i,c) + (1-\alpha) * N(i,c) - \beta * \wedge (i,c)$$

 α : importance of clustering x neighborhood β : penalization for open triangles

High transitivity x High connectivity

Penalizes open triangles (if desired) and very large communities.

Overlapping Nodes

An insight:

if $\Delta(i,c) < thr\Delta$ or N(i,c) < thrN: Add i to $\forall c'$ where N(i,c') > thrSh

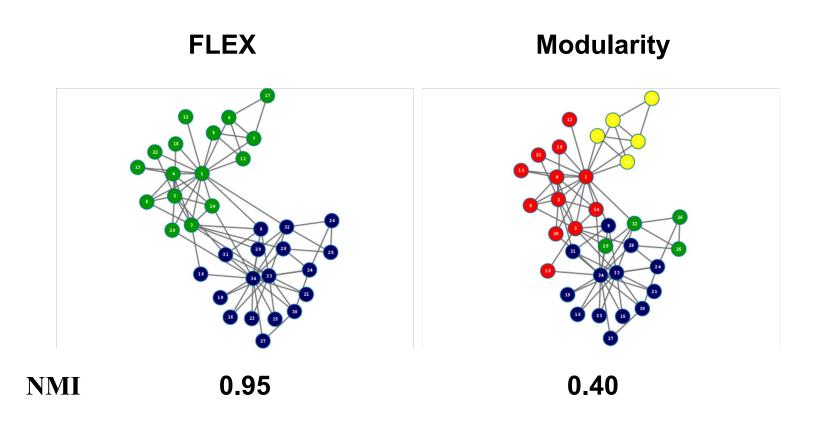
Experiments

Four real networks.

Four randomly generated without noise and overlapping nodes.

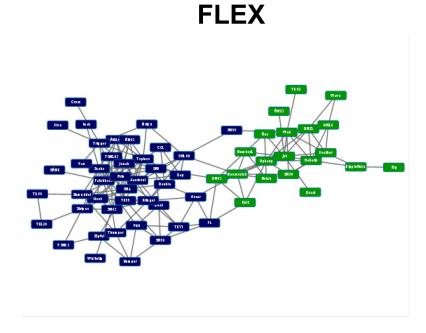
Four randomly generated with noise and overlapping nodes.

Karate Club

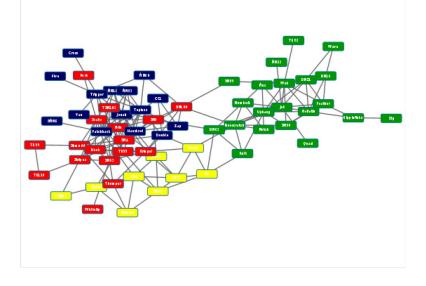


 $\alpha = 0.8, \beta = 0.3, \gamma = 2$

Dolphins



Modularity



NMI

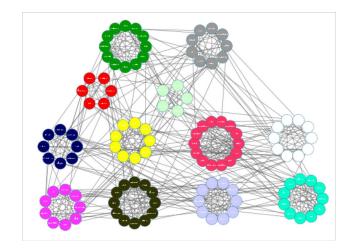
0.46

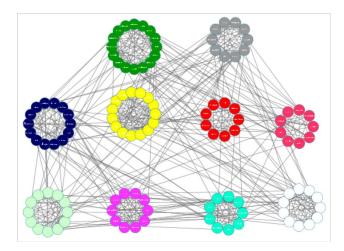
 $\alpha = 0.4, \beta = 0.3, \gamma = 4$

Football

FLEX

Modularity



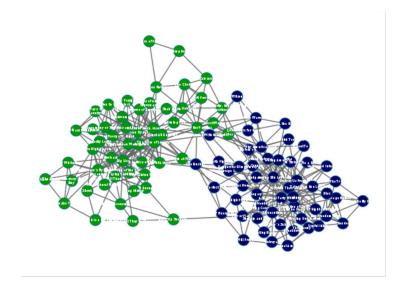


NMI 0.74

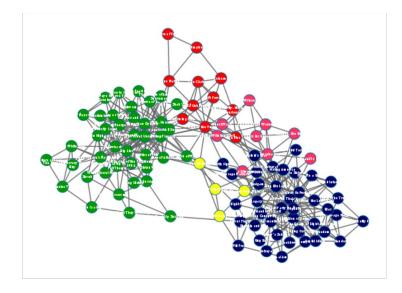
 $\alpha = 0.8, \beta = 0.6, \gamma = 4$

Krebs

FLEX



Modularity



NMI 0.45

 $\alpha = 0.8, \beta = 0.3, \gamma = 4$

Random Networks

Network 50

Network 100

 $(\alpha = 0.8, \beta = 0.3, \gamma = 2)$

	w/o Noise		Noise	
Metric	FLEX	Modularity	FLEX	Modularity
NMI	0.94	0.94	0.77	0.43
NMI Over.	1.00	1.00	0.78	0.43
NMI Multimodal	0.87	0.93	0.69	0.42

$$(\alpha = 0.8, \beta = 0.3, \gamma = 4)$$

	w/o Noise		Noise	
Metric	FLEX	Modularity	FLEX	Modularity
NMI	0.95	0.95	0.93	0.58
NMI Over.	0.98	0.98	0.94	0.58
NMI Multimodal	0.96	0.95	0.82	0.43

Network 500

$$(\alpha = 0.8, \beta = 0.3, \gamma = 4)$$

Network 200

	w/o Noise		Noise	
Metric	FLEX	Modularity	FLEX	Modularity
NMI	0.97	0.97	0.93	0.60
NMI Over.	1.00	1.00	0.94	0.62
NMI Multimodal	0.98	0.97	0.81	0.47

$$(\alpha = 0.8, \beta = 0.3, \gamma = 4)$$

	w/o Noise		Noise	
Metric	FLEX	Modularity	FLEX	Modularity
NMI	0.99	0.99	0.89	0.55
NMI Over.	1.00	1.00	0.91	0.56
NMI Multimodal	0.99	0.99	0.73	0.40

Final Remarks

• FLEX is an improvement to Modularity.

• The three weighting parameters requires a prior study of the network.

• But they give some hints on the network dynamics.

• Insight to overlapping nodes.

Future Work

• Adapt Louvain Method to use FLEX

• Comparison with other overlapping detection heuristics

• Large-scale networks