Origami: (un)folding the abstraction of recursion

schemes for program synthesis

Matheus Fernands, Emilio Francesquini, Fabricio Olivetti de Franca

Federal University of ABC
Center for Mathematics, Computation and Cognition (CMCC)
Heuristics, Analysis and Learning Laboratory (HAL)

01 June 2023

&

UFABC

Origami: Program Synthesis by (un)Folding

Generalization: the swiss knife of programmers

» Common patterns observed in different programs: make it generic
and reusable!

* Focus on the specificities instead of the repetitive part

Origami Programming

A very general (and unknown) programming paradigm called Origami
Programming exploits the combination of the recursion schemes of
consuming (fold) and producing (unfold) values to implement algorithms.

Advantages

 The recursion (of the consumer) will always terminate!
 Focus on the important part of the program
 Can be automatically optimized

+ Easier to visualize and describe the program flow

Objective

Simplify the program synthesis problem to exploit these abstractions and
simplifying the search through two steps:

1. Pick a pattern
2. Evolve specific parts of this pattern

Recursion Schemes

data List b a = Nil | Cons b a

~ ~ ~

1 23

1. Null list
2. Current element of the list
3. Current accumulated value of the folding process

Catamorphism - folding right

This is the fold-right function: the right associative folding.

Sub-patterns of catamorphism
Considering algorithms involving lists:

Reducing: Type signature [a] -> b, consumes all of the elements
until only a single value remains.

Mapping: Type signature [a] -> [b], applies a function to every
element of our container.

Function: Type signature [a] -> [a] -> b, it takes two
containers and returns a value of type b.

Composition: Composition of any of the previous patterns, e.g., [a]

=> (b, [cl).

Reducing to a single element

Syllables (A 1) Given a string containing symbols, spaces, digits,
and lowercase letters, count the number of occurrences of vowels
(a, e, i, 0, u, y) in the string and print that number as X in The
number of syllables is X.

Reducing to a single element

syllables :: String -> Int
syllables xs = cata alg xs

alg Nil = el -- this can only be a constant

alg (Cons x xs) = e2

Reducing to a single element

syllables :: String -> Int
syllables xs = cata alg xs

alg Nil = 0

-— e2 :: Char -> Int -> Int
-— ¢ :: Char

-— s :: Int

alg (Cons x xs) = e2

Reducing to a single element

syllables :: String -> Int
syllables xs = cata alg xs

alg Nil = 0

alg (Cons x xs) = ifisVowel x then xs + 1 else xs

10

Reducing to a single element

In python:

def syllables(my_string):
count = 0
for ¢ in my_string:
if isVowel(c):
count = count + 1

return count

11

recursion scheme

Figura 1: Distribution of recursion schemes used to solve the GPSB problems.

&

UFABC

We adapted HOTGP to evolve just the main function of reducing,
mapping, composition patterns in catamorphism. For this experiment we
provided the choice of pattern and initial values.

Origami ~HOTGP DSLS PushGP G3P CBGP G3P+

count-odds 95 50 11 8 12 4 0
double-letters 91 0 50 6 0 0 -
negative-to-zero 100 100 82 45 63 24 99
replace-space-with-newline 63 38 100 51 0 29 0
scrabble-score 100 - 31 2 2 1 -
string-lengths-backwards 94 89 95 66 68 20 -
syllables 66 0 64 18 0 53 -

13

Recursion Schemes in this paper

+ Catamorphism:
* Reducing
* Mapping
* Function
» Composition
* Anamorphism
* Hylomorphism (cata followed by ana)
* Accumorphism (fold-left):
* Indexed traversal
 Catamorphisms with post-processing

14

Other beasts

+ Para/ Apo: folding and unfolding with access to downward
elements of the structure.

* Mutu / Comutu: fold with mutual recursion (even/odd) or unfolding
a seed into two or more structures.

* Histo / Dyna / Futu: folding with access to sub-results, dynamic
programming, and generating multiple layers.

 Indexed catamorphism: support to nested data structures and
type-safe structures

* Monadic morphisms: same morphisms with support to monads
(e.g., state handling, 10, etc.)

15

Future steps

 Keep solving benchmark problems using recursion schemes

* Implement a simple breadth-search that searches all patterns in

parallel

* Add support to different recursion schemes and base structure

To BeGontinued [\]]

16

_
UFABC

Spare slides

Generating a Function

Super Anagrams (P 7.3) Given strings x and y of lowercase letters, return
true if y is a super anagram of x, which is the case if every character in x is
iny. To be true, y may contain extra characters, but must have at least as

many copies of each character as x does. \end{displayquote}

18

Generating a Function

superAnagram :: String -> String -> Bool
superAnagram = cata alg . fromList
where
alg NilF ys = True
alg (ConsF x xs) ys = (notnull) ys && elem x ys && xs (dele

In Python:

def superAnagram(xs, ys):
for x in xs:
if not null(ys) and x in ys:
ys.delete(x)
else:
return False
return True

19

When you started off with nothing: anamorphism

This pattern represents the unfolding:

program :: a -> g b
program = fromFix . ana coalg

coalg :: a ->f b
coalg arg = case e0 arg of
EndCase -> Patternl

Casel -> Pattern2 el _1 el 2 ... el m

CaseN -> PatternN eN_1 eN_ 2 ... eN_m

20

Anamorphism

Digits (A 6) Given an integer, print that integer’s digits each on
their own line starting with the least significant digit. A negative
integer should have the negative sign printed before the most sig-
nificant digit.

21

Anamorphism

digits :: Int -> [Int]
digits x = tolList $ ana coalg x
where
coalg x =
case x==0 of
True -> NilF
False -> ConsF (if absx <10
then (x ‘rem‘ 10)
else abs (x ‘rem‘ 10))

(x ‘quot‘ 10)

22

	Origami: Program Synthesis by (un)Folding
	Spare slides

