
Equality Graph Assisted Symbolic

Regression

Fabrício Olivetti de França, Gabriel Kronberger

Federal University of ABC & University of Applied Sciences Upper Austria

29 April, 2025

About me

Who am I?

• Working with Symbolic

Regression since 2018:

• model interpretability

• lightweight methods

• improving navigability

• incorporating domain

knowledge

• post analysis: identifiability,

redundant parameters,

simplification, confidence

intervals

1/37

Where am I?

Currently working at UFABC (Santo Andre - Brazil):

• Associated professor (completed the supervision of 22

undergrad, master, and Ph.D. students)

• Head of Heuristics, Analysis and Learning Laboratory

(HAL)

• Coordinator of the gradute program in Computer Science.

2/37

Equality Graphs for Babies

Hi, I am an Equality Graph!

Hi, I’m an equality graph, but you

can call me e-graph!

I look exactly like an ordinary graph,

but with some added stripes!

3/37

I can store equivalences

These “stripes” show the equivalence

relationships I’ve learned so far.

If we follow the path from the middle

×, we will build the expression 2 × 𝑥.
But if we follow the +, we will build
𝑥 + 𝑥.

But they are the same!! I group them

together so you can choose the best

expression for the occasion.

4/37

Terminology

The dashed boxes, my stripes, are

called e-classes, and they are assigned

a numerical id.

The solid boxes are called e-nodes and

are associated to a symbol.

The arrows, called edges, points from

one e-node to an e-class, they give the

instructions on how to build equivalent

expressions. We can read them as “if

you go from this e-node, you can pick

any e-node from the destination

e-class and they will form the same

expression (up to equivalence)”.

5/37

Equality Saturation

I can start small, resembling an acyclic

directed graph.

6/37

Equality Saturation

And I can learn some rules of how

things are equal!

7/37

Equality Saturation

Using these rules, I can find the

e-classes that matches the left-hand

side of these rules…

8/37

Equality Saturation

…and grow new e-nodes adding the

right-hand side of the rule as a new

e-node/e-class.

9/37

Equality Saturation

Since we know that they are

equivalent, I can merge them into a

single e-class.

10/37

Equality Saturation

As I keep applying these rules, I can

grow up to a point where no rule will

create new e-nodes. At this point, I

have reached saturation and every

possible equivalent expression can be

extracted from me!

(but reaching saturation often requires

much time and memory)

11/37

Equality Saturation

I can also store additional information

about every e-class that can be

propagated upwards, gaining new

knowledge.

This information can be universal or

data dependent.

12/37

Symbolic Regression + E-graphs = �

Simplifying expressions

+
𝜃0 *
𝜃1 /

* +
𝜃2 y * * *

𝜃3 y / 𝜃7𝜃8 y *
𝜃4 * 𝜃9 y
𝜃5 x *

𝜃6 x

Equality saturation and e-graphs were

used to reduce the

overparameterization of symbolic

expressions, leading to more

interepretable expressions and easier

to fit.

de Franca, Fabricio Olivetti, and Gabriel Kronberger. ”Reducing overparameterization of symbolic
regression models with equality saturation.” Proceedings of the Genetic and Evolutionary
Computation Conference. 2023.

Kronberger, Gabriel, and Fabrício Olivetti de França. ”Effects of reducing redundant parameters
in parameter optimization for symbolic regression using genetic programming.” Journal of
Symbolic Computation 129 (2025): 102413.

13/37

Measuring inneficiency of genetic programming

Applying equality saturation, we can normalize the visited

expressions and verify the inneficiency of genetic programming

search.

Kronberger, Gabriel, et al. ”The Inefficiency of Genetic Programming for Symbolic Regression.”
International Conference on Parallel Problem Solving from Nature. Cham: Springer Nature
Switzerland, 2024.

14/37

Measuring inneficiency of genetic programming

The lines are counts of: - unique

expressions visited during GP search

(purple) - unique structures (replacing

constants with placeholders) (green) -

unique structures after simplifying

(blue) - dotted line is a trivial

expression 𝑐

15/37

Measuring inneficiency of genetic programming

An ideal random search (RS) can find the best solution much

faster than GP and Operon. But it depends on ensuring that we

can sample from all of the possible expressions without

replacement.

16/37

Neutrality

Genetic programming tends to create

equivalent expressions to help with the

navigability.

When it creates an equivalent and

bloated expression, it will insert new

bulding blocks into the search without

impacting the fitness, thus creating

opportunity to find different

expressions at a later time.

Hu, Ting, and Wolfgang Banzhaf. ”Neutrality, robustness, and evolvability in
genetic programming.” Genetic Programming Theory and Practice XIV (2018): 101-117.

17/37

Generating novelty

What would happen if we enforce the generation of unvisited

expressions?

+

𝑥 cos

𝑥

=>

+

𝑥 +

2 𝑥

=>

+

𝑥 ∗

2 𝑥

If we store all of the search history inside a single e-graph, we

can verify all possible perturbations that generates an unvisited

expression.

18/37

Generating novelty

+

x 𝑐𝑜𝑠

𝑥

+

∗

+

𝑥 2

𝑥 =

+

x 2

We can also verify all recombinations that will generate a new

expression.

19/37

Equality Graph Assisted Symbolic

Regression

Equality Graph Assisted Symbolic Regression

Let us introduce SymRegg, an e-graph

assisted symbolic regression. Main

objectives:

• store all the search history in a

single e-graph

• run few iterations of equality

saturation to generate equivalent

expressions

• exploit the e-graph to enforce the

creation of unvisited expressions

• minimize the burden of choosing

hyper-parameters

20/37

SymRegg

• Insert all terminals into e-graph and evaluate.

• Insert random expression up to a max_size.

• Repeat until we generate 𝑛 unique expressions:
• Try to generate an unvisited expression from the

50max_size expressions using the 50 first dominance fronts.

• If it fails, try to generate an unvisited expression from the

100 best expressions found so far.

• If it fails, try to evaluate a random not-evaluated e-class

from the e-graph.

• If it fails, try to insert a completely random expression.

• If we succeed to find a new expression, evaluate, insert into

the e-graph and run 1 step of equality saturation.

• Return the e-graph

21/37

SymRegg - Generating expressions from a selection

The first two attempts will perform either the e-graph assisted

subtree perturbation or the e-graph assisted subtree

recombination, each one with 50% chance applied to the

pre-selected sets (the 50 first fronts or top-100 expressions).

This will exploit the promising building blocks generated during

the search.

22/37

SymRegg - Evaluating a subtree

If the first two steps fail,

the algorithm retrieves all

e-classes that were never

evaluated, and evaluate

one at random. This will

guarantee the evaluation

of a new expression

unless all e-classes are

evaluated.

23/37

SymRegg - Inserting a new expression

In the worst case scenario, the algorithm will generate a new

expression completely at random.

24/37

SymRegg - Final steps

For every generated expression, we can verify whether it was

never visited in log 𝑛 for 𝑛 nodes in the expression.

If it already exists, the algorithm will not fit the parameters and

evaluate (the computationally expensive part).

25/37

Efficiency of SymRegg

Datasets

We have tested the efficiency of SymRegg using 4 datasets:

• Beer’s law and Supernovae, extracted from1

• Nikuradse 1 and 2, extracted from2 as well as the

experimental methods.

1Russeil, Etienne, et al. “Multiview Symbolic Regression.” Proceedings of

the Genetic and Evolutionary Computation Conference. 2024.
2Kronberger, Gabriel, et al. “The Inefficiency of Genetic Programming for

Symbolic Regression.” International Conference on Parallel Problem Solving

from Nature. Cham: Springer Nature Switzerland, 2024.

26/37

Beer’s law

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

P
(F

it
n
e
ss

>
th

re
sh

o
ld

)

Number of visited expressions

Beer / Len=10 1.866e-4

TinyGP
egraph trace

pyoperon len10
symregg

esr

 1 10 100 1000 10000

Number of visited expressions

Beer / Len=10 5.652e-5

egraph trace
pyoperon len10

esr

27/37

Supernovae

 1 10 100 1000 10000

P
(F

it
n
e
ss

>
th

re
sh

o
ld

)

Number of visited expressions

Supernovae / Len=101.663e-2

 1 10 100 1000 10000

Number of visited expressions

Supernovae / Len=101.837e-3

 1 10 100 1000 10000

Number of visited expressions

Supernovae / Len=107.155e-4

TinyGP
egraph trace

symregg
esr

28/37

Nikuradse 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

P
(F

it
n
e
ss

>
th

re
sh

o
ld

)

Number of visited expressions

Nikuradse 1 / Len=10 1.296e-3

 1 10 100 1000 10000

Number of visited expressions

Nikuradse 1 / Len=10 1.090e-3

 1 10 100 1000 10000

Number of visited expressions

Nikuradse 1 / Len=10 9.759e-4

egraph trace
symregg

29/37

Nikuradse 2

 1 10 100 1000 10000

P
(F

it
n
e
ss

>
th

re
sh

o
ld

)

Number of visited expressions

Nikuradse 2 / Len=101.736e-2

 1 10 100 1000 10000

Number of visited expressions

Nikuradse 2 / Len=108.259e-3

 1 10 100 1000 10000

Number of visited expressions

Nikuradse 2 / Len=104.812e-3

TinyGP
egraph trace

symregg
esr

30/37

What’s next?

The future of this marriage

With SymRegg we are only scratching the surface of how

e-graphs can assist the process of equation discovery.

There are many more we can do to exploit the information

gathered during the search.

31/37

rEGGression

rEGGression: an Interactive and Agnostic Tool for the

Exploration of Symbolic Regression Models introduces a new

tool for symbolic models that allow the user to go beyond the

traditional Pareto front.

32/37

Integrating Domain Knowledge

As shown at the beginning, we can store additional information

about the e-classes in the e-graph,

either universal such as:

• Monotonically

increasing, concave,

convex, symmetric,

etc.

or data dependent such as:

• Units information, totality of the

operation (e.g., no division by

zero), shape information

dependent of the parameter

33/37

Integrating Domain Knowledge

This information can be used to select the best expressions

explored during the search that gurantees such properties.

During the search, we can create domain knowledge aware

operators that tries to enforce the creation of feasible

expressions.

34/37

Incrementally building a large database

The e-graph is nothing more than a representation of a part of

the search space. It can be stored in a database, thus avoiding

having to rebuild it during a new search.

Every new search can store information about the fitness for that

particular dataset into a relational database, and information

such as average fitness of a certain building block can be used to

generate expressions for a new dataset, creating the possibility

of a transfer learning.

35/37

Final Remarks

In short, this presentation introduced the idea of e-graphs and

equality saturation and how they can improve the efficiency of

equation discovery.

Not only that, but we showed that this data structure can be

exploited to advance even further into creating a personalized

experience for the user, enabling them to smoothly integrate

their domain knowledge into the search or after the search.

36/37

Questions

All the e-graph assisted tools for symbolic regression can be

found at: https://github.com/folivetti/srtree

37/37

	About me
	Equality Graphs for Babies
	Symbolic Regression + E-graphs = ❤️
	Equality Graph Assisted Symbolic Regression
	Efficiency of SymRegg
	What's next?

