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Abstract

The search for symbolic regression models with genetic program-
ming (GP) has a tendency of revisiting expressions in their original
or equivalent forms. Repeatedly evaluating equivalent expressions
is ineflicient, as it does not immediately lead to better solutions.
However, evolutionary algorithms require diversity and should al-
low the accumulation of inactive building blocks that can play an
important role at a later point. The equality graph is a data struc-
ture capable of compactly storing expressions and their equivalent
forms allowing an efficient verification of whether an expression
has been visited in any of their stored equivalent forms. We exploit
the e-graph to adapt the subtree operators to reduce the chances
of revisiting expressions. Our adaptation, called eggp, stores every
visited expression in the e-graph, allowing us to filter out from
the available selection of subtrees all the combinations that would
create already visited expressions. Results show that, for small ex-
pressions, this approach improves the performance of a simple GP
algorithm to compete with PySR and Operon without increasing
computational cost. As a highlight, eggp was capable of reliably
delivering short and at the same time accurate models for a selected
set of benchmarks from SRBench and a set of real-world datasets.
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+ Computing methodologies — Symbolic and algebraic algo-
rithms; - Mathematics of computing — Genetic programming.
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1 Introduction

Symbolic regression (SR) searches for a mathematical function that
approximates a set of data points. It can be used to find nonlinear
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regression models [17, 18] or for scientific discovery [6, 8, 18, 23,
31, 35].

The current state-of-the-art SR algorithms [10, 22] use genetic
programming (GP) as the main search engine. One of such im-
provements, used by several state-of-the-art implementations, is
the search for a parametric function that replaces the constants with
adjustable parameters that are fitted using nonlinear optimization
techniques.

Not only is the search for a symbolic model NP-hard [36] but
when searching for a parametric model, it usually requires the
solution to a multimodal optimization problem, which by itself is
NP-hard [27] and can hinder the search for the optimal solution.

To make matters worse, the usual way of encoding mathematical
expressions as symbolic expression trees, allows GP to visit differ-
ent but equivalent expressions [21] that evaluate to the same values.
These equivalent expressions may be unnecessarily large and con-
tain redundant parameters, which reduces the probability of finding
their optimal values [9, 19]. Even for the simple expression p;x1
we can produce an infinite number of equivalent expressions con-
sidering that p are fitting parameters, for example ((p1x1) + (p2x1),
x1/p1, x% /(p1x1), etc. are all different parameterizations of the same
expression.

GP cannot differentiate between equivalent forms of a given
expression, and simplification heuristics are often insufficient, as
seen in [9]. Some authors [16, 26] argue that redundancy is neces-
sary to allow the algorithm to navigate through the search space,
as these equivalent expressions are guaranteed to have the same
accuracy, allowing the search to keep multiple genetically different
variations of solution candidates in the hopes of finding a better
solutions. However, we do not know what would happen to GP
search dynamics if we try to prevent keeping semantic duplicates
in the GP population.

Equality saturation [37] uses a set of equivalence rules and pro-
duces all equivalent forms of a given expression. It alleviates the
phase ordering problem in the optimization phase when compiling
computer programs. Given a program represented as a symbolic
expression tree, and a set of equivalence rules, it iteratively applies
the rules and stores all equivalent programs in a compact data struc-
ture called equality graph (e-graph). The main idea is that upon
saturation, the graph contains all equivalent forms of the original
program and the optimal form can be extracted from the e-graph
using a heuristic. This technique was previously used in the context
of SR in [9, 19] to investigate the problem of overparameterization
that can negatively affect the fitting of numerical parameters. The
e-graph has another interesting feature that can be exploited by SR
algorithms: it contains a database of all visited patterns and their
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equivalent forms that can be easily matched against new candidate
expressions.

In this work, we investigate the benefits of exploiting the e-graph
to increase the chances of generating a novel expression when
applying crossover and mutation. In short, the proposed crossover
operator will limit the selection of the second parent to a subset of
subtrees that can only generate an unvisited expression. For the
subtree mutation, it will replace a random subtree from the original
tree ¢ with a random subtree e generating the new tree ¢’. If ¢’ has
already been visited, the root of e will be changed to a random
choice of nonterminals that generates an unvisited expression.

These operators are tested inside a simple GP implementation
based on tinyGP [33] and compared against tinyGP with parameter
fitting and two state-of-the-art algorithms: Operon [5] and PySR [8].
The results show that this simple! modification can improve the
performance of tinyGP to an extent that it becomes competitive
(and in some aspects better) than the state-of-the-art. The use of an
e-graph as a support structure for GP brings new light to symbolic
regression and GP with the possibility of exploring the accumulated
history of the search process and even combining the history of
multiple searches.

This paper is organized such that in Section 2 we will summarize
the related works in symbolic regression. Section 3 will explain the
basic concepts of equality saturation and the e-graph data structure.
In Section 4 we will detail the proposed modification to simple GP.
Section 5 will show the experiment methods used in this paper
followed by Section 6 where we report and discuss the results.
Finally, Section 7 gives some final remarks and expectations for the
future.

2 Related work

The redundancy of GP search space has been investigated by many
authors with conflicting conclusions to whether this is beneficial
or not for the search. For example, Ebner [12] argued that this
redundancy enables the search to reach the optima through dif-
ferent trajectories, increasing the chances of achieving one of the
equivalent expressions. On the other hand, Gustafson et al. [13] ob-
served that when the recombination between two similar solutions
was forbidden, there was an increase in offsprings that changed the
original behavior of their parents, leading to increased performance.

Several works made a detailed study about the redundancy and
neutrality in GP (i.e., when a change in the solution has no effect
on its outcome). For example, Hu, Banzhaf, and Ochoa [1, 14, 15]
investigated linear GP for Boolean SR problems with the help of
search trajectory networks showing that some phenotypes are
overrepresented in the search space. Regarding subtree crossover,
McPhee et al. [25] showed that over 75% of crossovers produced
no immediately useful semantic changes.

Kronberger et al. [21] studied the inefficiency of a simple GP
comparing with the enumerated search space [2] and using equality
saturation to count the percentage of unique expressions generated
during the GP search. They found that from the total of visited
expressions during the search, only around 40% were unique. This

'We acknowledge that the modification is simple provided we have a working imple-
mentation of e-graph.
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not only wastes computational resource but it also shows that, at
some point, GP fails to explore different regions of the search space.

Many authors observed improvements in the obtained solutions
when applying any form of simplification during the search [7,
28, 30, 32] and, as a side effect, it stimulates the diversity of the
population [3, 4].

Equality saturation has been used in the context of symbolic
regression as a support tool to study the behavior of the search.
Many state-of-the-art SR algorithms have a bias towards creating
expressions with redundant numerical parameters [9, 19]. This re-
dundancy can increase the chance of failing to correctly optimize
such parameters, leading to sub-optimal solutions. In [21] this tech-
nique was used to detect the equivalent expressions visited during
the GP search. So far, the equality saturation technique was not
used during the GP search to improve the quality of the solutions.

3 Equality saturation and e-graphs

Equality saturation [34] was proposed as a solution to the phase
ordering problem in compiler optimization. This problem occurs
when optimizing a program by applying a set of rewrite rules
sequentially while dropping the information about the previous
versions of the program. If the optimization follows a non-optimal
sequence, it will lead to a sub-optimal program.

Equality saturation solves this issue by applying all of the opti-
mization rules in parallel while keeping the intermediate transfor-
mations in a compact form using the data structure called e-graph.

Fig. 1a illustrates an example of an e-graph. Each solid box rep-
resents an e-node that contains a symbol of the expression. The
dashed boxes group a set of e-nodes together and it is called an
e-class, each e-class is assigned an e-class id (number in the bottom
right of an e-class box). The main property of an e-class is that, no
matter which e-node is chosen during the traversal, it will lead to
an equivalent expression with all other e-nodes.

We can see that in the middle box (e-class id 4), if we follow
through X it will generate the expression 2x and if we follow
through + it will generate x + x. The abstract description of the
algorithm is very simple, though a concrete and optimal implemen-
tation requires the use of advanced techniques and data structures.
The main idea is: i) match all the equivalence rules in the current
state of the e-graph, ii) apply the rules creating new e-classes, iii)
merge the equivalent e-classes, iv) repeat until saturation (i.e., no
changes occur).

The current state-of-the-art implementation [37]?, called egg®,
encodes the e-graph as a map of an e-node to an e-class, a map
of the e-class ids to their structure, and a set of e-classes that still
needs analysis to maintain consistency. The structure of an e-class
contains the information about the e-nodes it contains, a list of
the parent e-nodes, and additional information also referred to as
semantic analysis. This implementation also maintains a database
of patterns that allows the algorithm to efficiently match patterns
inside the e-graph structure.

Usually, the e-graph is used to represent a single program or
expression and their equivalent forms. But, the structure can keep
any number of expressions as long as we keep a list of the e-classes

Zhttps://docs.rs/egg/latest/egg/
3egg stands for e-graphs good
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(b)

Figure 1: (a) Illustrative example of an e-graph and (b) the
same e-graph after inserting the expression x + 2x.

ids representing the root of each expression. For example, if we
insert the expressions (2/x)(x + x), 2x, v/x into the e-graph, we
would end up with Fig. 1a, minus the equivalent relations. As a
result, we would keep the list [6,4, 7] representing the ids of the
expressions we inserted. New expressions are added bottom-up.
Starting from a terminal, the algorithm checks whether it already
exists in the e-graph and returns its e-class id, if it does not exist,
it creates a new id. When adding an internal node, the algorithm
first converts it to an e-node by replacing its children by their e-
class ids and then it checks whether it already exists in the e-graph,
returning the corresponding e-class id or a new one. In our example
from Fig. 1, if we try to add the expression x + 2x, it would first
retrieve the e-class ids 1, 2 for the terminals x and 2, then it would
return the e-class id 4 corresponding to the e-node 2 X 1, where
underlined numbers correspond to e-class ids. Finally, it would
create a new e-class with id 8 and the e-node 1 + 4. This mechanism
allows us to compactly store a set of expressions and readily assert
whether an expression already exists in the structure.

In our implementation, we made a series of improvements to
this data structure as we will describe in the next section.

4 eggp: e-graph GP

The proposed algorithm, eggp (e-graph genetic programming),
follows the same structure as the traditional GP. The initial popula-
tion is created using ramped half-and-half respecting a maximum
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size and maximum depth parameter [17] and, for a number of gen-
erations, it will choose two parents using tournament selection,
apply the subtree crossover with probability pc followed by the
subtree mutation with probability pm, when the offsprings replace
the current population following a dominance criteria.

The key differences of eggp are:

(1) new solutions are inserted into the e-graph followed by one
step of equality saturation to find and store some of the
equivalent expressions of the new offspring.

(2) the current population is replaced by the set of individuals
formed by: the Pareto front, the next front after excluding
the first Pareto-front, and a selection of the last offspring at
random until it reaches the desired population size.

(3) the subtree crossover and mutation are modified to try to
generate an unvisited expression.

Apart from that, we do not make use of other mutation operators
commonly used in the literature [5, 8] or advanced techniques to
stimulate diversity such as island models. Notice that a single step
of equality saturation will not guarantee the insertion of all equiv-
alent expressions in the e-graph but, as we apply more iterations,
the e-graph can grow exponentially large. This issue is amplified by
the fact that we are storing multiple expressions. As we will see in
Sec. 6, the single step seems to be sufficient to improve the results
and the benefits of increasing the number of steps is a subject for
a future research. Regarding the Pareto-front extracted from the
entire history, this is equivalent to the traditional NSGA-II algo-
rithm [11] as the dominance relation is transitive. Keeping two
ranks of dominance and filling up the remainder of the population
with new expressions is meant to stimulate the combination of new
expressions (exploration) while keeping the best fronts (exploita-
tion). As a side-note, in this implementation we keep a database of
generated expressions sorted by fitness and size (both objectives
used in this work), so the Pareto-front can be retrieved in O(n)
where n is the number of extracted individuals. A new expression
can be inserted into this structure in O(log(m)), where m is the
number of evaluated expressions so far. Finally, if we add the ex-
pression x + x + x, equality saturation will generate the equivalent
form Ox (constants are replaced by parameters), this expression is
stored in the database of expressions with size 3.

4.1 Crossover and mutation

Since the algorithm keeps the whole history of visited expression
and its equivalent forms, we can exploit this information to increase
the probability of generating unvisited expressions in the pertur-
bation operators. For the crossover (Fig. 2a), the main idea is that
it first chooses a crossover point from the first parent and then it
randomly chooses a subtree of the second parent which generates
an unvisited expression upon combination.

For the mutation operator (Fig. 2b), it chooses a point of the tree
to generate a new subtree and, after generating the new subtree,
it checks whether it generates an unvisited expression. With a
negative answer, it randomly changes the root node of this subtree
from a choice of all the possible non-terminals that can ensure
novelty. In the event of impossibility of generating a new expression,
a random recombination is returned.
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Figure 2: Examples using the e-graph in Fig. 1b of (a) recombination between two expressions: after choosing the recombination
point marked in bold in the first tree, the second tree has only two points which will generate new expressions (marked in bold
in the second expression), after picking one of these points, we generate the new solution illustrated in the tree to the right; (b)
mutation: after choosing the mutation point, a new subtree is generated. If the new expression is already contained in the

e-graph, the root of the subtree is changed by a random non-terminal that creates an unvisited expression.

Algorithm 1 traverse-tree, de.f represents a A-function that re-
ceives the argument e and evaluates the expression f.

Require: current node n, node index i, list of A-parents p, subtree
to be inserted s, e-graph g

1: if i =0 then

2. return not-in-e-graph(n, p, 2)

3: else

4. if should go left or arity(n) = 1 then

5 traverse-tree(left(n), i — 1, (Ae.n(e, right(n)) : p, s)

6 else

7 nl « size(left(n))

8 traverse-tree(right(n), i — nl -1, (Ae.n(left(n), e) : p, s)

To verify whether the combination of the original tree n with
the subtree s replacing the i-th node will generate an unvisited
expression, we traverse the tree in pre-order traversal until we
reach the node we want to replace (i-th node). While traversing the
tree, we build a list of A-functions equivalent to a function f (e, n)
that, given a tree e, it creates a new tree with the operator of n as
the root, replacing one child with e and keeping the other child of
n (if it is a binary operator). So, if the next step in the traversal is to
the left, this function will build a tree rooted at n with the left child
being replaced by e and the right child as right(n), this is illustrated
in Alg. 1. Upon reaching the desired node, we traverse the tree
upwards by checking whether the current node n exists in the e-
graph and, if the assertion is false, it will apply the first function
of the list to n, generating the parent e-node, and calling this same
function recursively (Alg. 2). Given that none of the ancestors exist
in the e-graph, the algorithm confirms that this is an unvisited
expression.

The full implementation of eggp has nine hyperparameters: num-
ber of generations, population size, maximum expression size, likeli-
hood function (MSE, Gaussian, Poisson, Bernoulli, ROXY [24]), num-
ber of iterations and retries for the parameter optimization, proba-
bilities of crossover and mutation, and the list of non-terminals.

The algorithm is implemented in Haskell using the srtree* library
for symbolic regression and with an adapted implementation of

“https://github.com/folivetti/srtree

Algorithm 2 not-in-e-graph

Require: current e-node n, list of A-parents p, e-graph g.
1: n-is-new « notln(n, g)
2. if empty(p) or n-is-new then
3:  return n-is-new
4: else
5. (parent, p’) < uncons(p)
6:  not-in-e-graph(parent(n), p’, g)

equality saturation based on hegg®. The binaries are available at
https://github.com/folivetti/srtree/releases/tag/v2.0.1.0.

5 Experiments
To measure the benefit of stimulating novelty using the history of
visited expressions and their equivalent form stored in the e-graph,
we chose three baseline algorithms: a version of tinyGP [33] imple-
mented using the same backend library, Operon [5] and PySR [8].
Operon is a carefully crafted implementation of GP for symbolic
regression with runtime performance in mind and a good set of de-
fault hyperparameters. It incorporates multiple mutation operators
that allow a finer perturbation of a solution. Besides, it envelops
every variable node with a scaling parameter adjusted using nonlin-
ear optimization. PySR also supports the same mutation operators
and nonlinear optimization of the parameters, it stands out with
the use of an island model capable of keeping the diversity of the
population to stimulate the exploration of the search space. It also
applies a simplification heuristic on a selection of the expressions.
Both PySR and Operon uses multi-objective optimization optimiz-
ing accuracy and size as default. The research questions we want
to address with the experiments are:

(1) What is the impact of increasing the probability of generating
novelty, when compared to a minimalistic implementation
such as tinyGP?

(2) How close does eggp get to the state-of-the-art without
resorting to more advanced concepts such as specialized
mutation operators, enforcing the placement of numerical
parameters, and island model?

Shttps://github.com/alt-romes/hegg


https://github.com/folivetti/srtree/releases/tag/v2.0.1.0

Improving Genetic Programming for Symbolic Regression with Equality Graphs

Table 1: Symbolic regression algorithms hyperparameters.
Operators enveloped with |.| apply the absolute value to the
first argument. The population size for PySR is !/ of the
reported values in this table to allow the use of ten islands.
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Table 2: Datasets, number of points and variables, and cor-
responding max. size. Every training set of the SRBench
group was capped at 1000 data points chosen at random. For
192_vineyard we ensured that the rows with xy = x; = 0 were
contained in the training set to avoid misbehaving models.

Parameter Value
number of evaluations 100 000 Name Points Features max. size
prob. mutation 0.3 hyperparameter tuning
prob. crossover 0.9 523_analcatdata_neavote 100 2 50(50)
non-terminal set + —, % +,1og (|.]), exp, \/ﬂ, |x]Y) 527_analcatdata_election2000 67 14 50(50)
pop. size / gens. / tourn. size  {500/200/5, 200/500/3} 635_fri_c0_250_10 250 10 50(50)
max depth 10 1029_LEV 1000 4 50(50)
objectives [ MSE, size] SRBench
optimization steps 2 X 50 (100 for Operon) 192_vineyard 52 2 50(33)
210_cloud 108 5 50(33)
522_pm10 500 7 50(33)
557_analcatdata_apneal 475 3 50(33)
We should stress that we have kept eggp with only the subtree 579 fri_c0_250 5 250 5 50(33)
crossover and mutation to be directly comparable with tinyGP, thus 606_fri_c2_1000_10 1000 10 50(33)
measuring the benefits of this modification. 650 _fri_c0_500_50 500 50 50(33)
We have fixed all the common hyperparameters to a standard 678_visualizing_environmental 111 3 50(33)
value and performed a hyperparameter tuning with two different 1028_SWD 1000 10 50(33)
settings for each algorithm varying only whether to have a larger 1089 _USCrime 47 13 50(33)
population with fewer iterations or a smaller population with more 1193_BNG_lowbwt 31104 9 50(33)
iterations. The only differences in settings are: for PySR we are 1199 BNG_echoMonths 17 496 9 50(33)
using 10 populations in its island model, so the size of each popula- Real world
tion is !/10 of the population size for the other algorithms, earlier Chemical_1_tower 4999 25 30(20)
experiments with the first set of benchmarks revealed that PySR Chemical_2_competition 1066 57 30(20)
performs significantly worse when using a single population; for Friction_stat_one-hot 2016 16 30(20)
Operon, we perform a maximum of 100 optimization iterations Friction_dyn_one-hot 2016 17 30(20)
instead of 50 iterations with 2 different starting points since it does Flow_stress_phip0.1 7800 2 20(13)
not support multiple restarts for the parameter optimization; for Nasa_battery_1_10min 636 6 20(13)
eggp, /5 of the training data is separated and used as a validation Nasa_battery_2_20min 1638 5 20(13)
set to calculate the fitness, while the parameters are fitted using Nikuradse_1 362 2 20(13)
the remaining ?/s. Notice that tinyGP is the only single-objective Nikuradse_2 362 1 20(13)

approach and will be left out of the hypervolume comparison.

For the first set of experiments, we picked four datasets from the
original SRBench [10] and split each one into training and test sets
with a ratio of 0.7/0.3. We executed each configuration 30 times
and stored the test errors of each run. Once we have the optimal
hyperparameters, we evaluate these algorithms in the benchmarks
of the current version of SRBench® for the reduced SRBench track.
This set is supposed to be representative as it contains datasets with
different characteristics. For this experiment, we applied a 3-fold
cross-validation repeating the experiment 10 times, creating a total
of 30 runs. Finally, we picked some real-world datasets from the
literature corresponding to data from different fields, these data
already have pre-determined training and test sets, as such we will
run 30 repetitions of each experiment. For every experiment, we
store the final Pareto front and will report the performance plot,
the AUC and average rank among all datasets and statistical test of
the ranks, the average and standard deviation of the running time,
the hypervolume of the Pareto front. All algorithms were restricted
to a single core to ensure equal conditions.

Shttps://github.com/cavalab/srbench/discussions/174#discussioncomment-10285133

Table 2 shows the datasets of each set of experiment with their
corresponding number of data points, features and the chosen max-
imum size parameter. /

6 Results and Discussion

6.1 Hyperparameter tuning

Applying the Wilcoxon rank test to the obtained results using
a = 0.05, we observed that only tinyGP expressed a significant dif-
ference in their results (p-value 0.002) favoring 200 generations and
population size 500. There was no significant difference observed
in any algorithm, thus, we chose the configuration which found the
best result for most datasets. With this criteria, PySR and Operon
was set to 200 generations and eggp with 500 generations.

"The maximum size for Operon is set to 0.67 of the maximum size because, internally,
Operon will not count the scale coefficients of a terminal towards the model size. This
factor enforces Operon to search on a similar search space as the other algorithms.
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6.2 New SRBench datasets

In Fig. 3 we can see the performance plots for each SRBench dataset
of the best solution according to the highest R? on the training set.
The x-axis of these plots represents the R? measured on the test
set, and the y-axis shows the percentage of runs that the algorithm
found an R? equal or larger than x. The ideal algorithm would cover
the whole area from (0, 0) to (1,1). As we can see from these plots,
eggp always covers an area similar or better than the competing
algorithms. Considering the area under the curve values (AUC),
eggp covered the most area in 7 out of the 12 datasets, Operon in 5,
PySR in 4 and tinyGP in 0. It is also evident from these plots how
eggp displays a significant improvement over tinyGP.

In Table 3 we can see the ranks when considering the median
R? of the test set and the AUC. We can see that, using this criteria,
eggp is consistently ranked second, while Operon and PySR take
turns in the first and third place. The statistical test reveals that
we can reject the null hypothesis when comparing to PySR with
the alternative of having greater median rank. On the other hand,
for the AUC values, we can see that eggp is greater than the other
algorithms on average while rejecting the null hypotheses for each
comparison. Unlike the median of the R?, the AUC is the average
R? weighted by the probability of obtaining that value or greater,
acting as a reliability measure of obtaining that value or greater.

6.3 Real-world datasets

In Fig. 4 we observe a similar behavior with eggp covering an area
close to or better than the best competing algorithm. Considering
AUC, it found 4 out of 9 best results, while PySR only 2, Operon 6
and tinyGP 1. Again, considering the ranks on the median of the
R? (Table 4), it consistently achieved second place, but in this set,
Operon was ranked first for most of the datasets. We should notice,
though, that eggp results were always close to the best competing
algorithm, while even Operon misbehaved in two datasets (flow
and niku-2). When observing the statistical test results, we can
conclude that there are no significant differences between the eggp
and Operon, but the hypotheses of eggp being equivalent to PySR
and tinyGP can be rejected.

6.4 Hypervolume

Table 5 shows the average and standard deviation of the hypervol-
ume of the final Pareto fronts. For SRBench, eggp covered a similar
area to the other algorithms. PySR returned the largest hypervol-
ume in most of the SRBench datasets. For the real-world datasets,
eggp covered the most hypervolume overall.

6.5 Computational time

Regarding the runtime, since Operon is the fastest symbolic re-
gression implementation, as noted in [5], we calculated the ratio
between the average runtime of each algorithm to Operon. Fig. 5
shows the relative runtime per dataset. In this plot we can see that
eggp and tinyGP were both between 5 to 10 times slower than
Operon. PySR varied from 5 to 30 times the runtime of Operon
depending on the dataset. The higher ratios were observed on high-
dimensional or larger datasets. We should stress that all algorithms
were constrained to run with a single thread, thus both Operon and
PySR runtime could be smaller when exploiting multi-threading.
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Table 3: Ranks of the median (1st block) and AUC (2nd block)
of the test set R? for the SRBench. The p-values were calcu-
lated with a Wilcoxon signed-rank test using as alternative
hypotheses (o = 0.05) being greater (>) than eggp.

dataset eggp Operon PySR tinyGP
192_vineyard 1 4 3 2
210_cloud 1 4 2 3
522_pml0 3 4 1 2
557_analcatdata_apneal 2 4 3 1
579_fri_c0_250 5 2 1 3 4
606_fri_c2_1000_10 1 2 3 4
650_fri_c0_500_50 2 1 3 4
678_visualizing_environmental 1 4 2 3
1028_SWD 4 1 2 3
1089_USCrime 1 3 4 2
1193_BNG_lowbwt 2 1 3 4
1199 BNG_echoMonths 4 3 1 2
mean 2.00 2.67 2.50 2.83
p-value > 0.08  0.02 0.06
192_vineyard 0.24 0.08 0.16 0.17
210_cloud 0.71 0.34 0.71 0.58
522_pml0 0.16 0.14 0.19 0.18
557_analcatdata_apneal 0.75 040  0.58 0.68
579 fri_c0_250 5 0.91 0.95  0.83 0.79
606_fri_c2_1000_10 0.96 0.96 0.82 0.70
650_fri_c0_500_50 0.87 0.92 0.83 0.40
678_visualizing_environmental  0.28 0.08 0.27 0.20
1028_SWD 0.38 0.39 0.39 0.36
1089_USCrime 0.68 0.59 0.59 0.59
1193_BNG_lowbwt 0.56 0.57 0.56 0.55
1199_BNG_echoMonths 0.40 0.30 0.43 0.35
mean 0.58 0.48 0.53 0.46
p-value > 0.05  0.03 0.00

7 Conclusions

In this paper we explored the use of e-graphs and equality satu-
ration as a mechanism to keep track of the history of the search
engine of symbolic regression and exploiting its pattern match-
ing capabilities to propose a variation to the traditional subtree
crossover and mutation that increases the probability of generating
novel expressions.

The e-graph data structure efficiently stores and queries for
parts of expressions. Exploiting this capability, we modified the
subtree operators to only sample subtrees that would form unvisited
expressions. The expectation is that this simple modification would
render a significant improvement in the search procedure.

We tested the proposed algorithm, called eggp, in 21 different
benchmarks from the literature and compared with a simple GP
with the original subtree operators, and two state-of-the-art algo-
rithms, PySR and Operon. The results showed that the modified
operators are capable of improving the performance of a simple
GP to compete with the state-of-the-art. The main highlight of this
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Figure 3: Performance plots for the SRBench datasets. This plot shows the probability of returning an R? equal or larger than x

on a random run of each algorithm.

approach is that it consistently performs equal or better than the
best competing approach.

The main limitations of these experiments lie in the use of default
or reasonable values for the hyperparameters. We should notice
that eggp contains eight parameters that should be adjusted accord-
ingly in a practical scenario. Meanwhile, PySR contains about 30
hyperparameters that may affect the algorithm performance® and
Operon contains about 20 hyperparameters. With careful experi-
mentation, both PySR and Operon could possibly achieve similar
results. Regarding the runtime, eggp is consistently faster than
PySR but significantly slower than Operon. When comparing with
tinyGP, we can see that the use of e-graph and equality saturation
does not increase the runtime significantly.

In conclusion, the expressiveness and capabilities of the e-graph
data structure enabled us to make a simple modification to the
original subtree operators while significantly improving the perfor-
mance of GP for symbolic regression. This allowed us to obtain a

8we are not considering hyperparameters that expect prior knowledge.

more robust algorithm delivering better performance more reliably
than state-of-the-art implementations. As for the next steps, this
same modifications can be applied to any other mutation operator
used by the state-of-the-art algorithms. Not only that, but the e-
graph opens up many new possibilities for improving the search as
it allows us to query expressions with a combination of properties,
which can translate to diversity-preserving population and easy to
integrate prior knowledge [20, 29]. In addition, the storage of the
search history allows us to analyze the learned building blocks and
exploit this information to generate new solutions. °
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