
ar
X

iv
:2

40
6.

01
50

0v
1

 [
cs

.P
L

]
 3

 J
un

 2
02

4

Going Bananas! - Unfolding Program Synthesis

with Origami

Matheus Campos Fernandes1[0000−0002−5118−2399], Fabrício Olivetti de
França1[0000−0002−2741−8736], and Emilio Francesquini1[0000−0002−5374−2521]

Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
{fernandes.matheus,folivetti,e.francesquini}@ufabc.edu.br

Abstract. Automatically creating a computer program using input-
output examples can be a challenging task, especially when trying to syn-
thesize computer programs that require loops or recursion. Even though
the use of recursion can make the algorithmic description more succinct
and declarative, this concept creates additional barriers to program syn-
thesis algorithms such as the creation and the (tentative) evaluation
of non-terminating programs. One reason is that the recursive function
must define how to traverse (or generate) the data structure and, at the
same time, how to process it. In functional programming, the concept
of recursion schemes decouples these two tasks by putting a major fo-
cus on the latter. This can also help to avoid some of the pitfalls of
recursive functions during program synthesis, as argued in a previous
work where we introduced the Origami technique. In our previous pa-
per, we showed how this technique was effective in finding solutions for
programs that require folding lists. In this work, we incorporate other
recursion schemes into Origami, such as accumulated folding, unfolding,
and the combination of unfolding and folding. We evaluated Origami on
the 29 problems of the standard General Program Synthesis Benchmark
Suite 1, obtaining favorable results against other well-known algorithms.
Overall, Origami achieves the best result in 25% more problems than
its predecessor (HOTGP) and an even higher increase when compared
to other approaches. Not only that, but it can also consistently find a
solution to problems that many algorithms report a low success rate.

Keywords: Program Synthesis · Genetic Programming · Recursion
Schemes.

1 Introduction

Program Synthesis (PS) is the task of automatically generating a computer pro-
gram written in the programming language of choice using some form of spec-
ification [6]. This task can be framed as a search problem, in which we explore
the space of possible programs under a set of constraints, usually by a grammar
and a maximum program size, that remove irrelevant or undesirable solutions
from the search space. From this point of view, this process depends on three
factors: the format of that specification, the constraints of the search space, and
the actual search algorithm [6].

http://arxiv.org/abs/2406.01500v1

2 Fernandes et al.

A convenient format for the specification is a set of input-output exam-
ples that demonstrate the expected outputs for several different input cases.
In this particular case, the task is called Inductive Synthesis or Programming-

by-Example (PBE). The main advantage of this approach is that sets of examples
are easy to create, and often do not require deep knowledge of the problem in
question. However, the lack of corner or special cases in the set allows for the
generation of programs that do not follow the original intent of the user.

Among the vast selection of possible search algorithms, we highlight Genetic

Programming (GP) [10]. GP is a search algorithm that tries to balance the explo-
ration and exploitation of the search space using recombination and perturbation
of a bag of solutions. It employs selective pressure at every step, inspired by the
evolution of species, to favor the fittest solutions when replicating and applying
such operators. Some benchmark problems extracted from common program-
ming tasks have been successfully solved by recent variations of the original GP
algorithm, such as PushGP [8], CBGP [14], GE [12], G3P [3] and HOTGP [1].

The representation of the solutions and the imposed constraints play a major
role in search algorithms, as they describe the navigability in this space and the
coverage of possible programs. For example, the Push language [15] is a stack-
based programming language in which the operations are executed sequentially
storing and retrieving values from the stack corresponding to the types of the
operation. As such, it provides additional flexibility to the computer programs
as a certain operation is not constrained by the type of the previous one. This
increases the possibilities of navigation of the search space. On the other hand,
in Grammatical Evolution [12] the search space is defined by the grammar being
evolved. This can limit the size of the search space and ensure that each step
of the generated program is valid. Likewise, type-safe representations, such as
in CBGP [14] and HOTGP [1], carry at each node the information of the input
and output types, constraining the space to valid programs (i.e., that execute
without errors) and solutions that follow the type specification.

A common challenge to GP algorithms is how to handle recursion or loops.
The problem here lies in the fact that it is possible to generate an unnecessarily
long or even unbounded recursion/loop. This is alleviated by the use of program-
ming patterns that hide the loop or recursion behind a declarative language.
Popular examples of such patterns are the map, filter, and fold functions.

In particular, fold describes a recursive pattern capable of expressing recur-
sive algorithms that traverse a structure aggregating the partial results. Ex-
amples of the use of this pattern are sum, product, and even insertion sort. A
complementary pattern that describes the recursion that generates or builds a
structure is known as unfold. For example, unfold can be used to generate the
list of Fibonacci numbers, or reversing a list.

Although many algorithms can be described using folds or unfolds, this ap-
proach has some limitations such as working only on lists, or the inability to
store partial results. A more general set of recursive patterns that involves fold-
ing and unfolding is known as Recursion Schemes [11]. The Recursion Schemes
extend the common folding and unfolding operations to work on any inductive
type and include additional mechanisms to handle a wider variety of recursive

Going Bananas! 3

function patterns1. These recursion schemes can be used to guide the synthe-
sis of recursive programs, as their structure is well-defined and can be used as
scaffolding, with variations only in certain parts of the program.

Origami [2] is an algorithm capable of synthesizing typed, pure, functional
programs that support different Recursion Schemes. In that work, a proof-of-
concept implementation of Origami was presented, capable of partially synthesiz-
ing one single morphism. This implementation was evaluated, yielding promising
preliminary results. In this paper, we provide and evaluate the first complete im-
plementation of Origami, following the description given in the original paper.
This represents a meaningful step in assessing the effectiveness of integrating
Recursion Schemes into Program Synthesis. We evaluate the performance of
Origami using the problems described in the General Program Synthesis Bench-
mark Suite 1 (PSB1) [9], comparing the obtained results to well-known GP-based
program synthesis algorithms. When comparing the success rate of each prob-
lem, Origami achieves the best result in 25% more problems than its predecessor
(HOTGP) and an even higher increase when compared to other approaches.
Additionally, Origami was capable of achieving a high success rate (higher than
70%) in problems that most algorithms achieve less than 50%, such as scrabble-

score, grade, for-loop-index, and super-anagrams.
The remainder of this text is organized as follows. In section 2 we con-

duct a brief literature review of Functional Program Synthesis and Recursion
Schemes. In section 3 we present Origami and outline details of our implemen-
tation. In section 4 we show and analyze the results, comparing Origami to
HOTGP and other well-known methods. Finally, in section 5 we give some final
observations about Origami and describe future work.

2 Related Work

HOTGP [1] is a GP algorithm that synthesizes pure, typed, and functional pro-
grams. Its approach to recursion includes support for higher-order functions,
λ-functions, and parametric polymorphism. Experiments conducted on PSB1
showed that HOTGP is capable of synthesizing correct programs more frequently
than any other of the evaluated algorithms, on average.

In [16], the authors presented the first algorithm for synthesizing programs
that exploit Recursion Schemes. Their work focuses only on catamorphisms over
natural numbers using Peano representation (i.e., the inductive type of natural
numbers). The authors evaluate their approach with variations of the Fibonacci
sequence, successfully obtaining the correct programs.

Our approach, Origami, was originally proposed in [2] where we evaluated
the feasibility of using Recursion Schemes to synthesize recursive programs. In
that work, we showed that the entire PSB1 benchmark can be solved by one
of four different recursion schemes: catamorphism, accumulation, anamorphism,
and hylomorphism. It also describes preliminary experiments with catamorphism

1 The authors represent these recursive functions using bananas, lenses, envelopes,
and barbed wires [11].

4 Fernandes et al.

showing that, for the problems that are solvable with this scheme, the use of
scaffolding improved the success rate when compared to HOTGP. The results
were promising and are evidence that, once the choice of which recursion scheme
is made, the synthesis process can be simplified as the evolution searches for
simpler trees in a more constrained search space.

3 Origami Program Synthesis

Current Origami implementation follows a Koza-style Genetic Programming [10]
(tree representation) with the main differences from traditional approaches being
the introduction of immutable nodes, ensuring a certain recursion scheme, and
the type-safety of the genetic operators (as in [1]).

The implementation is based on patterns, which are used to represent different
recursion schemes. A pattern is composed of immutable nodes and a set of evolv-
able slots that, when replaced with expressions, can be evaluated. The immutable
nodes describe the main definition of the recursion scheme (see subsection 3.1)
and are fixed once we choose the scheme, while the evolvable slots represent the
inner mechanisms that need to be synthetized to correspond to the expected
behavior described by the dataset. These slots have a well-defined output type
(inferred from the problem description), and a well-defined set of bindings to
which the expression has access.

In this work, we focus on the 6 different patterns that comprehend the mini-
mal set required to solve PSB1. Naturally, the Origami framework is not limited
to these patterns, and more could be introduced as needed. The following sec-
tion introduces each of the 6 patterns in technical detail. In this text, due to
space constraints, we assume the reader has a basic understanding of recursion
schemes [11], how they can be used to solve PSB1 [2], as well as the Haskell
language notation, which is similar to the ML notation.

3.1 Patterns

NoScheme This is the simplest pattern in Origami, as it does not employ any
recursion at all. It is represented by the following code:

f arg0 ... argn = slot1

This pattern has just a single slot, which has all the arguments in scope and
returns a value of the same type as the output of the program. Its main use is
to accommodate for problems that do not require any recursion.

Catamorphism over Indexed List This pattern captures the most common
recursion scheme observed in PSB1, and arguably in practical scenarios as well,
i.e., folding a list from the right. This pattern is commonly used in Haskell as
foldr. In Meijer-notation [11], this would be represented by the banana brackets
Lb,⊕M, where b is the initial value and ⊕ is the combining function. In the context
of Origami, it is represented by the following code:

Going Bananas! 5

f arg0 ... argn = cata alg arg0 where

alg INil = slot1
alg (ICons i x acc) = slot2

In a problem with arguments of type i0 . . . in and of output type o, where
i0 ≡ [e]2, this pattern’s slots are typed as follows:

– slot1 :: o, with nothing in scope;
– slot2 :: o, with scope { i :: Int ; x :: e ; acc :: o ; arg0 :: i0 . . . argn :: in}.

The catamorphism solutions presented in [2] alternately used regular and
Indexed Lists. In an effort to minimize the number of different patterns to be
considered, we chose to only have the Indexed List variation of the catamor-
phisms, as it is more general than a regular List (i.e., , we can make it indexed
by replacing [] with INil, and x:xs with ICons index x xs). For the remain-
ing schemes we employ a regular list since it is enough to solve the problem (as
shown by the canonical solutions presented in [2]).

In an effort to minimize the number of different patterns to be considered,
we chose to only have the Indexed List variation of this scheme, as it is more
general than a regular List. For brevity, this will be referred to as simply Cata

in the remainder of this paper.

Curried Catamorphism over Indexed List This pattern captures a common
variation of the Catamorphism, and can be represented by the following code:

f arg0 arg1 = cata alg arg0 arg1 where

alg INil = \ys -> slot1
alg (ICons i x f) = \ys -> slot2

As a problem of type i0 -> i1 -> o can also be seen in its curried form as
i0 -> (i1 -> o), we can employ Catamorphism to accumulate a function over
the first argument, and then apply this function to the second argument. This
is useful when we need to apply a Catamorphism over the zip of two lists [2].

In a problem with arguments of type i0, i1
3 and of output type o, where

i0 ≡ [e], this pattern’s slots are typed as follows:

– slot1 :: o, with scope { ys :: i1 };
– slot2 :: o, with scope { i :: Int ; x :: e ; f :: i1 -> o ; ys :: i1 }.

For brevity, this will be referred to as simply CurriedCata in the rest of this
paper.

2 In this text, the notation i0 ≡ [e] is a restriction such that i0 can be decomposed
into the type [e], which is the type of a list with elements of some type e.

3 It is worth noting that, differently from other patterns, this one can only be applied
to problems with exactly two arguments.

6 Fernandes et al.

Anamorphism to a List This pattern is commonly used in Haskell as unfold,
which is used to generate a list. In Meijer-notation [11], this would be represented
by the concave lenses (g, p) where g is the generator function, and p is the pred-
icate. In the context of Origami, it can be represented by the following code:

f arg0 ... argn = ana coalg slot1 where

coalg seed = if slot2 then []

else slot3 : slot4

In a problem with arguments of type i0 . . . in and of output type o, where
o ≡ [e], this pattern’s slots are typed as follows:

– slot1 :: i0, with scope { arg0 :: i0 . . . argn :: in};
– slot2 :: Bool, with scope { seed :: i0 ; arg0 :: i0 . . . argn :: in};
– slot3 :: e, with scope { seed :: i0 ; arg0 :: i0 . . . argn :: in};
– slot4 :: i0, with scope { seed :: i0 }.

Note that while we do not enforce arg0 to be used in slot1, it must be of
the same type as arg0, as all of the solutions for PSB1 respected this constraint.
For brevity, this will be referred to as simply Ana in the rest of this paper.

Accumulation over a List This pattern captures using an accumulation strat-
egy before using a foldr, and can be represented by the following code:

f arg0 ... argn = accu st alg arg0 slot1
where

st [] s = []

st (x : xs) s = x : (xs, slot2)

alg [] s = slot3
alg (x : acc) s = slot4

In a problem with arguments of type i0 . . . in and of output type o, where
i0 ≡ [e], and given a type a, this pattern’s slots are typed as follows:

– slot1 :: a, with scope { arg0 :: i0 . . . argn :: in};
– slot2 :: a, with scope { x :: e ; xs :: [e] ; s :: a ; arg0 :: i0 . . . argn :: in};
– slot3 :: o, with scope { s :: a ; arg0 :: i0 . . . argn :: in};
– slot4 :: o, with scope { x :: e ; acc :: o ; s :: a ; arg0 :: i0 . . . argn :: in}.

Notice that this is the first pattern whose types are not fully determined by
the type of the arguments and the expected output type: the accumulator type
a. In the context of this paper, types such as this one will be referred to as
unbound types. To keep the implementation simple, we assume unbound types
are known and provided by the user. Even though that might not be the case
in a practical scenario, it is not possible to try all types as there is an infinite
number of them. Properly exploring different types is an interesting challenge
that warrants dedicated research. For brevity, this pattern will be referred to as
simply Accu in the rest of this paper.

Going Bananas! 7

Hylomorphism through a List This pattern captures an Anamorphism fol-
lowed by a Catamorphism, such as applying foldr to the result of unfold,
in Haskell. In Meijer-notation [11], this would be represented by the envelopes
J(c,⊕), (g, p)K. In Origami, it is represented by the following code:

f arg0 ... argn = hylo alg coalg arg0 where

coalg seed = if slot1 then [] else slot2 : slot3
alg [] = slot4
alg (x : acc) = slot5

In a problem with arguments of type i0 . . . in and of output type o, and

given a type a, this pattern’s slots are typed as follows:

– slot1 :: Bool, with scope { seed :: i0 ; arg0 :: i0 . . . argn :: in};

– slot2 :: a, with scope { seed :: i0 ; arg0 :: i0 . . . argn :: in};

– slot3 :: i0, with scope { seed :: i0 ; arg0 :: i0 . . . argn :: in};

– slot4 :: o, with nothing in scope;

– slot5 :: o, with scope { x :: a ; acc :: o ; arg0 :: i0 . . . argn :: in}.

This is also a pattern that contains an unbound type: the intermediary list
has elements of type a. For brevity, this pattern will be referred to as simply
Hylo in the rest of this paper.

3.2 Genetic Programming

Origami synthesizes the evolvable slots using a Genetic Programming (GP) [10]
algorithm. Since each one of the recursive patterns requires more than a sin-
gle slot, we represent each solution as a collection of programs represented as
expression trees. Each element of this collection corresponds to one of the slots.

The GP starts with an initial random population of 1 000 individuals, and
iterates by applying either crossover to a pair of parents, or mutation to a sin-
gle parent, generating 1 000 new individuals in total. The entire population is
replaced by the offspring population.

The initial population is generated using a ramped half-and-half where half
of the individuals are generated using the full method and half using the grow
method. The maximum depth for each method varies between 1 and 5. The
parental selection is performed using a tournament selection of size 10.

Following a simple GP algorithm, in Origami the mutation randomly selects
one of the evolvable slots, then picks one point in the tree at random to be
replaced by a new subtree generated at random using the grow method, with a
maximum depth of 5− dcurrent . Crossover also starts by picking one of the slots
at random, then performing one of these two actions with equal probability: i)
swap the entire slot of one parent with the same slot of the other parent; ii) swap
two subtrees of the same output type from each parent.

8 Fernandes et al.

3.3 Grammar

In HOTGP (our previous work [1]), the choice of grammar was focused on pro-
viding a minimal set of operations that would enable functional programming,
with special attention to higher-order functions.

With Origami, however, our main focus is assessing whether the inclusion of
Recursion Schemes is beneficial to Program Synthesis. To achieve this goal, we
must enforce that recursion can only happen by selecting the appropriate pat-
tern. Therefore, our grammar was designed not to use any implicitly recursive
functions, such as map, filter, sum, and product, being aware that by doing it
we might remove shortcuts and potentially make the synthesis of certain prob-
lems harder. Changes were also made in an effort to more closely match the set
of operations used by other methods, with special attention to the grammar used
in recent implementations of PushGP [8]. As a result, Origami has a larger set
of operations than HOTGP. The full grammar is presented in Table 1.

Once an execution is finished, the champion’s slots are refined using the
same procedure that was used in HOTGP [1]. To refine a tree, we pick the
root node and check if replacing it with any of its children leads to a correctly-
typed solution with an equal or better fitness. If so, we replace it with the best
child; otherwise, we keep the original node. This process continues recursively,
traversing the tree and greedily replacing nodes with their children when needed.
This procedure aims to apply Occam’s Razor and generate a simpler and more
general solution [7], making sure the fitness in the training dataset is never worse.

4 Experimental Results

To evaluate our approach we conducted experiments to perform an automatic
search for different patterns in the PSB1 [9] context. For each of the 29 datasets,
we sequentially tried each pattern in increasing order of complexity:

1. NoScheme;
2. Cata, if arg0 is a list;
3. CurriedCata, if the problem has two arguments and arg0 is a list;
4. Ana, if the return type is a list;
5. Accu, if arg0 is a list;
6. Hylo.

For each dataset, 30 seeds of each pattern were executed, and we only ad-
vanced to the next applicable pattern if none of the seeds succeeded in finding a
solution (i.e., the success rate was 0%). Each seed followed the instructions pro-
vided by PSB1, using the recommended number of training and test instances,
and included the fixed edge cases in the training data, as well as using the fitness
functions described in [9].

Note that we deliberately placed the patterns with unbound types at the end
of the sequence. Therefore, the unbound type in both Accu and Hylo is only
decided after all other schemes have failed. For most benchmarks that got to
this point, we chose the type that was known to be correct according to the

Going Bananas! 9

Table 1. The complete set of operations available for Origami. Each dataset only had
access to the operations that involved its allowed types according to [9].

Operations Types

addInt, subInt, multInt, divInt,

quotInt, modInt, remInt, minInt,

maxInt

Int -> Int -> Int

absInt, succInt, predInt Int -> Int

addFloat, subFloat, multFloat,

divFloat, minFloat, maxFloat

Float -> Float -> Float

absFloat, sqrt, sin, cos, succFloat,

predFloat

Float -> Float

fromIntegral Int -> Float

floor, ceiling, round Float -> Int

ltInt, gtInt, gteInt, lteInt Int -> Int -> Bool

ltFloat, gtFloat, gteFloat, lteFloat Float -> Float -> Bool

and, or Bool -> Bool -> Bool

not Bool -> Bool

if Bool -> a -> a -> a

eq, neq a -> a -> Bool

showInt Int -> [Char]

showFloat Float -> [Char]

showBool Bool -> [Char]

showChar Char -> [Char]

charToInt Char -> Int

intToChar Int -> Char

isLetter, isSpace, isDigit Char -> Bool

length [a] -> Int

cons, snoc a -> [a] -> [a]

mappend [a] -> [a] -> [a]

elem a -> [a] -> Bool

delete a -> [a] -> [a]

null [a] -> Bool

head, last [a] -> a

tail, init [a] -> [a]

zip [a] -> [b] -> [(a, b)]

replicate Int -> a -> [a]

enumFromThenTo Int -> Int -> Int -> [Int]

reverse [a] -> [a]

splitAt Int -> [a] -> ([a], [a])

intercalate [a] -> [a] -> [a]

fst (a, b) -> a

snd (a, b) -> b

mkPair a -> b -> (a, b)

apply (a -> b) -> a -> b

singleton a -> b -> Map a b

insert a -> b -> Map a b -> Map a b

insertWith ((b, b) -> b) -> a -> b -> Map a b

-> Map a b

fromList [(a, b)] -> Map a b

10 Fernandes et al.

Table 2. The chosen types for the unbound types in Accu and Hylo. The type is
colored in blue when the decision was guided by the canonical solution.

Dataset Accu Hylo

checksum Int Int

collatz-numbers – Int

digits – Int

pig-latin – [Char]

string-differences Int (Char, Char)

sum-of-squares – Int

vector-average (Float, Int) Int

wallis-pi – Float

word-stats ((Int, Int), (Int, Int)) [Char]

x-word-lines Int [Char]

solutions presented in [2] (from now on referred to as canonical solutions). For
the cases in which the canonical solutions did not use Accu or Hylo, we chose a
reasonable type as needed. These choices are summarized in Table 2.

The maximum tree depth was set to 5 for each slot, and the crossover rate
was empirically set to 50%. We allowed a maximum of 300 000 evaluations with
an early stop whenever the algorithm finds a perfectly accurate solution accord-
ing to the training data. For patterns in which termination is not guaranteed,
namely Ana and Hylo, a maximum number of iterations was imposed (empiri-
cally set to 10 000). We also encountered an issue specific to CurriedCata, where
Origami was synthesizing solutions with the slot alg (Cons i x f) = \ys ->

f (f ys), essentially creating a “fork bomb”. To prevent this issue from hap-
pening, we introduced a maximum execution budget, which will terminate the
evaluation of the entire individual when a single iteration of a slot applied more
than 10 000 operations.

Table 3 shows the percentage of executions in which Origami was able to
synthesize a solution that completely solved the test set (i.e., success rate).
Origami found a solution for all of the problems that were canonically solved by
NoScheme as well as Cata. Surprisingly, it was also able to synthesize a solution
for “for-loop-index” by using NoScheme, even though the canonical solution used
Ana, and for “grade” by using Cata, even though the canonical solution used
CurriedCata. We nonetheless ran both of these problems with their canonical
patterns and discovered Origami was also able to synthesize solutions, albeit
less often. Moreover, Origami was able to find the solutions for 3 out of the 4
canonical CurriedCata problems, and 2 out of the 3 Ana problems. Accu and
Hylo, however, appear to be the most difficult patterns to synthesize, as no
solution for problems that canonically involve these patterns was found.

Considering the 4 canonical Accu problems, checksum and word-stats are
historically hard, with few methods ever finding a solution. The same can be
said for Hylo in the wallis-pi and collatz-numbers problems.

In vector-average, the canonical solution involved using Accu to compute
both the sum and the count as a pair in the st slots, and using the alg slots

Going Bananas! 11

Table 3. Percentual success rates obtained by Origami for each pattern in each
dataset. The “Best” column shows the highest success rate obtained for that dataset
across all patterns, which is also underlined. We also show in blue the pattern of the
canonical solution.

Dataset NoScheme Cata CurriedCata Ana Accu Hylo Best

checksum 0 0 – – 0 0 0
collatz-numbers 0 – – – – 0 0
compare-string-lengths 90 – – – – – 90
count-odds 0 40 – – – – 40
digits 0 – – 0 – 0 0
double-letters 0 3 – – – – 3
even-squares 0 – – 3 – – 3
for-loop-index 90 – – 67 – – 90
grade 0 100 10 – – – 100
last-index-of-zero 0 70 – – – – 70
median 97 – – – – – 97
mirror-image 93 – – – – – 93
negative-to-zero 0 87 – – – – 87
number-io 100 – – – – – 100
pig-latin 0 0 – – – 0 0
replace-space-with-newline 0 3 – – – – 3
scrabble-score 0 100 – – – – 100
small-or-large 53 – – – – – 53
smallest 100 – – – – – 100
string-differences 0 0 0 – 0 0 0
string-lengths-backwards 0 97 – – – – 97
sum-of-squares 0 – – – – 0 0
super-anagrams 0 0 73 – – – 73
syllables 0 7 – – – – 7
vector-average 0 0 – – 0 0 0
vectors-summed 0 0 20 – – – 20
wallis-pi 0 – – – – 0 0
word-stats 0 0 – – 0 0 0
x-word-lines 0 0 0 – 0 0 0

to perform the division as a post-processing step, finally obtaining the average.
The solution that got closer to the intended result was the following:

accu st alg arg0 (last arg0, length arg0)

where

st [] s = []

st (x : xs) s = x : (xs, s)

alg [] s = min 0 (last arg0)

alg (x : acc) s = acc + ((max (x - acc) x) / (snd s))

Origami took a different approach from the canonical solution, by storing
the length of the input in the second element of the tuple while having no use

12 Fernandes et al.

for the first element. The st section had no other purpose than to transmit this
pre-processing step to the alg section. This solution got a perfect score during
training but failed in testing for certain cases. If we were to replace min 0 (last

arg0) by 0 and max (x - acc) x by x, then this solution would be correct.
The Hylo solution for sum-of-squares employed coalg to generate a list of

all the numbers from 0 to arg0, and then used alg to square each number and
accumulate the sum. Even though this was the simplest Hylo solution, as Hylo
has 5 different slots, it has an increased search space in relation to other patterns,
which seems to be a big challenge for the algorithm.

Table 4 compares Origami’s results to HOTGP’s. There was a substantial
increase (> 30) in the success rate in 6 problems. In the 17 problems where the
absolute difference is < 30, we highlight syllables, double-letters and even-squares

problems, as those were problems for which HOTGP was not able to synthesize
a solution, whereas Origami was successful at least once. The two problems with
a more noticeable decrease are replace-space-with-newline and vector-average.
These can be explained by the change in grammar between the two algorithms,
as HOTGP’s solutions were arguably simpler due to having map and filter for
replace-space-with-newline and sum for vector-average. In a practical scenario,
the inclusion of these functions would likely lead to a correct solution but, as
previously noted, removing them was a conscious decision to enable the proper
assessment of the impact of Recursion Schemes in PS. It would also allow for
composite solutions, such as using Ana with a map inside instead of relying on
Hylo to find the entire pattern, which might be easier to synthesize.

To position Origami in the landscape of the best solutions currently found
in the literature, we compare the obtained results against those obtained by
PushGP [9], Grammar-Guided Genetic Programming (G3P) [3], and the ex-
tended grammar version of G3P (here called G3P+) [4], and some recently pro-
posed methods such as Code Building Genetic Programming (CBGP) [13], and
G3P with Haskell and Python grammars (G3Phs and G3Ppy) [5]. The results
are reported in Table 5. In this table, the “–” means the authors did not test
their algorithm for that specific benchmark.

Origami has the best results in 9 of the problems, which is the highest across
all methods. It also has the highest number of problems solved with 100%, ≥
75%, and ≥ 50%, and is second-place in ≥ 25%. When we consider problems to
which Origami found at least one solution, we note that it outperforms HOTGP,
CBGP, and all the G3P variations, placing Origami at the fourth place overall.
It is also worth noticing that Origami outperforms HOTGP in both the number
of best results and amount of problems above all thresholds, which demonstrates
it is a substantial improvement over HOTGP.

5 Conclusion

This work is the first full implementation of Origami, a GP algorithm proposed
in [2], and builds on our previous work, HOTGP [1]. Origami’s main differential is
the use of Recursion Schemes, well-known constructs in functional programming
that enable recursive algorithms to be defined in a unified manner. The main

Going Bananas! 13

Table 4. Origami’s success rates compared to HOTGP’s. The ∆ column shows the
relative success rate of Origami with respect to HOTGP. Problems not solved by either
approach are omitted for clarity.

Dataset Origami HOTGP ∆

scrabble-score 100 0 100
mirror-image 93 1 92
super-anagrams 73 0 73
last-index-of-zero 70 0 70
grade 100 37 63
for-loop-index 90 59 31
string-lengths-backwards 97 89 8
syllables 7 0 7
double-letters 3 0 3
even-squares 3 0 3
smallest 100 100 0
number-io 100 100 0
sum-of-squares 0 1 -1
median 97 99 -2
small-or-large 53 59 -6
compare-string-lengths 90 100 -10
count-odds 40 50 -10
negative-to-zero 87 100 -13
vectors-summed 20 37 -17
replace-space-with-newline 3 38 -35
vector-average 0 80 -80

motivation for using these in the PS context is enabling recursive programs to
be synthesized in a controlled manner, without sacrificing expressiveness.

We evaluate our approach in the 29 problems in the PSB1 dataset, which
is known to be solvable by just a handful of Recursion Schemes. In general,
Origami performs better than other methods, synthesizing the correct solution
more often than others in 9 problems, which is more than any other algorithm.
It was able to obtain the highest count of problems with success rate = 100%,
≥ 75% and ≥ 50%. These experimental results suggest that using Recursion
Schemes to guide the search is a promising research avenue. Currently, the main
challenge of Origami appears to be dealing with harder Recursion Schemes, such
as Accumulation and Hylomorphism. Different evolutionary mechanisms, such as
other selection methods and mutation/crossover operators, should be evaluated
in this context to understand if they can positively impact the search process.

In future work, a scheme to deal with unbound types will need to be devel-
oped. Some schemes, such as Accumulation and Hylomorphism, are not fully de-
fined by the input and output types of the problem and need extra type guidance
(on the unbound types) to properly define the program. In this implementation,
this information is provided by the user as a hyperparameter; but in a practical
scenario, this might be undesirable. Ideally, the search for the “correct” unbound
type should be incorporated into the search algorithm.

14 Fernandes et al.

Table 5. Success rate for each dataset. The best values for each problem are high-
lighted. The “# of Best” row shows the amount of problems in which each method
obtained the best result. The final 5 rows show the amount of problems in which each
method obtained a success rate above a certain threshold.

Dataset Origami HOTGP DSLS UMAD PushGP CBGP G3P G3P+ G3Phs G3Ppy

checksum 0 0 18 5 0 – 0 0 – –

collatz-numbers 0 – – – 0 – 0 0 – –

compare-string-
lengths

90 100 51 42 7 22 2 0 5 0

count-odds 40 50 11 12 8 0 12 3 – –

digits 0 0 28 11 7 0 0 0 – –

double-letters 3 0 50 20 6 – 0 0 – –

even-squares 3 0 2 0 2 – 1 0 – –

for-loop-index 90 59 5 1 1 0 8 6 – –

grade 100 37 2 0 4 – 31 31 – –

last-index-of-zero 70 0 65 56 21 10 22 44 0 2

median 97 99 69 48 45 98 79 59 96 21

mirror-image 93 1 99 100 78 100 0 25 – –

negative-to-zero 87 100 82 82 45 99 63 13 0 66

number-io 100 100 99 100 98 100 94 83 99 100

pig-latin 0 0 0 0 0 – 0 3 – –

replace-space-
with-newline

3 38 100 87 51 0 0 16 – –

scrabble-score 100 0 31 20 2 – 2 1 – –

small-or-large 53 59 22 4 5 0 7 9 4 0

smallest 100 100 98 100 81 100 94 73 100 89

string-differences 0 – – – 0 – – – – –

string-lengths-
backwards

97 89 95 86 66 – 68 18 0 34

sum-of-squares 0 1 25 26 6 – 3 5 – –

super-anagrams 73 0 4 0 0 – 21 0 5 38

syllables 7 0 64 48 18 – 0 39 – –

vector-average 0 80 97 92 16 88 5 0 4 0

vectors-summed 20 37 21 9 1 100 91 21 68 0

wallis-pi 0 – – – 0 – 0 0 – –

word-stats 0 – – – 0 – 0 0 – –

x-word-lines 0 0 91 59 8 – 0 0 – –

of Best 9 7 7 4 0 4 0 1 1 1

= 100% 4 4 1 3 0 4 0 0 1 1

≥ 75% 10 7 8 7 3 7 4 1 3 2

≥ 50% 13 10 13 9 5 7 6 3 4 3

≥ 25% 14 13 16 13 7 7 7 7 4 5

> 0% 19 15 24 21 22 9 17 17 8 7

Going Bananas! 15

References

1. Fernandes, M.C., De França, F.O., Francesquini, E.: HOTGP - Higher-Order
Typed Genetic Programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference. p. 1091–1099. GECCO ’23, Association for Computing
Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3583131.3590464

2. Fernandes, M.C., de Franca, F.O., Francesquini, E.: Origami: (un)folding the Ab-
straction of Recursion Schemes for Program Synthesis, pp. 263–281. Springer Na-
ture Singapore, Singapore (2024). https://doi.org/10.1007/978-981-99-8413-8_14,
https://doi.org/10.1007/978-981-99-8413-8_14

3. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A grammar design pattern
for arbitrary program synthesis problems in genetic programming. In: McDermott,
J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) Genetic Pro-
gramming. pp. 262–277. Springer International Publishing, Cham (2017)

4. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Extending program synthe-
sis grammars for grammar-guided genetic programming. In: Auger, A., Fonseca,
C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem
Solving from Nature – PPSN XV. pp. 197–208. Springer International Publishing,
Cham (2018)

5. Garrow, F., Lones, M.A., Stewart, R.: Why functional program synthesis
matters (in the realm of genetic programming). In: Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion. p. 1844–1853.
GECCO ’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3520304.3534045

6. Gulwani, S.: Dimensions in program synthesis. In: Proceedings of the 12th In-
ternational ACM SIGPLAN Symposium on Principles and Practice of Declar-
ative Programming. p. 13–24. PPDP ’10, Association for Computing Ma-
chinery, New York, NY, USA (2010). https://doi.org/10.1145/1836089.1836091,
https://doi.org/10.1145/1836089.1836091

7. Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving gen-
eralization of evolved programs through automatic simplification. In:
Proceedings of the Genetic and Evolutionary Computation Confer-
ence. p. 937–944. GECCO ’17, Association for Computing Machinery,
New York, NY, USA (2017). https://doi.org/10.1145/3071178.3071330,
https://doi.org/10.1145/3071178.3071330

8. Helmuth, T., McPhee, N.F., Spector, L.: Program synthesis using uniform muta-
tion by addition and deletion. In: Proceedings of the Genetic and Evolutionary
Computation Conference. pp. 1127–1134 (2018)

9. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation.
pp. 1039–1046 (2015)

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Complex Adaptive Systems, Bradford Books, Cambridge, MA
(Dec 1992)

11. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Functional Programming Languages and
Computer Architecture: 5th ACM Conference Cambridge, MA, USA, August 26–
30, 1991 Proceedings 5. pp. 124–144. Springer (1991)

12. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary
Computation 5(4), 349–358 (2001)

https://doi.org/10.1145/3583131.3590464
https://doi.org/10.1145/3583131.3590464
https://doi.org/10.1007/978-981-99-8413-8_14
https://doi.org/10.1007/978-981-99-8413-8_14
https://doi.org/10.1007/978-981-99-8413-8_14
https://doi.org/10.1145/3520304.3534045
https://doi.org/10.1145/3520304.3534045
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1145/3071178.3071330

16 Fernandes et al.

13. Pantridge, E., Helmuth, T., Spector, L.: Functional code building genetic program-
ming. In: Proceedings of the Genetic and Evolutionary Computation Conference.
p. 1000–1008. GECCO ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3512290.3528866

14. Pantridge, E., Spector, L.: Code building genetic programming. In: Proceedings of
the 2020 Genetic and Evolutionary Computation Conference. pp. 994–1002 (2020)

15. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genetic Programming and Evolvable Ma-
chines 3, 7–40 (2002)

16. Swan, J., Krawiec, K., Kocsis, Z.A.: Stochastic synthesis of re-
cursive functions made easy with bananas, lenses, envelopes and
barbed wire. Genetic Programming and Evolvable Machines 20(3),
327–350 (sep 2019). https://doi.org/10.1007/s10710-019-09347-3,
https://doi.org/10.1007/s10710-019-09347-3

https://doi.org/10.1145/3512290.3528866
https://doi.org/10.1145/3512290.3528866
https://doi.org/10.1007/s10710-019-09347-3
https://doi.org/10.1007/s10710-019-09347-3
https://doi.org/10.1007/s10710-019-09347-3

	Going Bananas! - Unfolding Program Synthesis with Origami

