
Reducing Overparameterization of Symbolic Regression Models
with Equality Saturation

Fabŕıcio Olivetti de França
Universidade Federal do ABC

Center for Mathematics, Computing and Cognition
Heuristics, Analysis and Learning Laboratory (HAL)

Santo André, SP, Brazil
folivetti@ufabc.edu.br

Gabriel Kronberger
Josef Ressel Center for Symbolic Regression, Heuristic
and Evolutionary Algorithms Laboratory, University

of Applied Sciences Upper Austria,
Hagenberg, Austria

gabriel.kronberger@fh-hagenberg.at

ABSTRACT

Overparameterized models in regression analysis are often
harder to interpret and can be harder to fit because of ill-
conditioning. Genetic programming is prone to overparame-
terized models as it evolves the structure of the model without
taking the location of parameters into account. One way to
alleviate this is rewriting the expression and merging the
redundant fitting parameters. In this paper we propose the
use of equality saturation to alleviate overparameterization.
We first notice that all the tested GP implementations suffer
from overparameterization to different extents and then show
that equality saturation together with a small set of rewriting
rules is capable of reducing the number of fitting parameters
to a minimum with a high probability. Compared to one
of the few available alternatives, Sympy, it produces much
better and consistent results. These results lead to different
possible future investigations such as the simplification of ex-
pressions during the evolutionary process, and improvement
of the interpretability of symbolic models.

CCS CONCEPTS

• Computing methodologies → Genetic programming.

KEYWORDS

symbolic regression, genetic programming, equality satura-
tion, simplification

ACM Reference Format:
Fabŕıcio Olivetti de França and Gabriel Kronberger. 2023. Re-

ducing Overparameterization of Symbolic Regression Models with
Equality Saturation. In Genetic and Evolutionary Computation
Conference (GECCO ’23), July 15–19, 2023, Lisbon, Portugal.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3583131.3590346

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590346

1 INTRODUCTION

Regression analysis is the study of the relationship between
independent and dependent variables of a phenomenon of
interest described by a mathematical function, also known as
regression model [9, 11]. The regression model can be used to
make inferences for unseen data or to gain deeper insights on
the studied phenomena [8]. In regression analysis one starts
from a fixed function form 𝑓(𝑥, 𝜃), for input data 𝑥, and
adjusts the values of 𝜃 to best fit the data. Different from
this approach, genetic programming (GP) can be used for
symbolic regression (SR) [13], searching for the best expres-
sion inside a search space composed of different mathematical
expressions. The values of parameters (i.e., 𝜃) are defined
as a fixed part of the expression. The choice of the correct
numerical parameters is a recurrent challenge in GP [21]. In
early works, a limited set of ephemeral random constants
(ERC) were initialized randomly and used as terminals to-
gether with input variables. Researchers relied explicitly on
the power of GP to evolve the sequence of instructions to
calculate the required values from the ERC and using the
operations available in the function set. Since the function
form is determined during the search, GP can generate over-
parameterized functions with redundant parameters. This
redundancy may lead to undesirable effects because it impairs
the interpretability of the expression and makes it difficult
to calculate confidence intervals for parameter estimates,
prediction intervals, or marginal likelihoods.

Many modern GP variants use a memetic approach [19]
and search for a parameterized regression model 𝑓(𝑥, 𝜃) where
the values of 𝜃 are adjusted before the evaluation. This ap-
proach was shown to increase the accuracy of the generated
models rivaling with opaque machine learning models [12, 16].
However, it does not prevent overparameterized expressions
which are assembled by crossover and mutation. If anything,
the overparameterization slows down memetic approaches,
because the more parameters we have, the larger the search
space, effectively making the search more difficult. Also, an
excess of parameters can cause multicolinearity of parameters
that implies infinitely many solutions of the same goodness-
of-fit. This can cause numerical issues and slower convergence,
for example, when optimizing parameter values using iterative
non-linear least squares algorithms [14].

One way to deal with this problem is to simplify expres-
sions to eliminate redundant parameters and to improve the

https://orcid.org/0000-0002-3012-3189
https://doi.org/10.1145/3583131.3590346
https://doi.org/10.1145/3583131.3590346
https://doi.org/10.1145/3583131.3590346

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Fabŕıcio Olivetti de França and Gabriel Kronberger

+

𝜃0 *

𝜃1 /

* +

𝜃2 y * * *

𝜃3 y / 𝜃7 𝜃8 y *

𝜃4 * 𝜃9 y

𝜃5 x *

𝜃6 x

Figure 1: An overparameterized expression tree pro-
duced by Operon with input variables: 𝑥, 𝑦 and pa-
rameters: 𝜃.

parameterization of the problem. Common simplification al-
gorithms [4] such as those implemented in Sympy [18] may
not suffice, because the objective-function used for this sim-
plification is for a very specific concept of what a simpler
expression means, not necessarily to reduce the number of
fitting parameters. Instead, we propose to use equality satu-
ration [10, 27] (EqSat), a rewriting strategy that applies all
the simplification rules keeping all the alternative function
forms in an optimized data-structure called e-graph. This
algorithm allows us to define a customized cost function that
describes what simple means in our context and allows us to
return expressions without redundant parameters which are
suited best for the estimation of parameters.

This paper shows the benefits of EqSat for removing re-
dundant parameters in SR models generated by different GP
systems. We only analyze the effects on the final models and
leave analysis of simplification of solution candidates within
a GP run for future work. The expressions found with EqSat
are compared to those simplified by a traditional approach
(Sympy) and without any form of simplification.

The paper is organized as follows: in Section 2 we expand
on the problem of overparameterization in GP. The EqSat
data structures and algorithms are described in Section 3
with more detail. Sections 4 and 5 describe the experimental
methodology followed by the discussion of the results. Finally
Section 6 concludes this paper with some perspective on the
use of EqSat in future research.

2 OVERPARAMETERIZATION IN
GENETIC PROGRAMMING

Recently Kronberger [14] identified the problem of overpa-
rameterization, specifically when using Operon [3], a modern
tree-based GP implementation for SR. The author noted that
the models produced by Operon were usually overparameter-
ized and mentioned a potential solution which is to simplify
expressions such that the redundant parameters are merged
together.

The example given in [14] is shown in Figure 1. The corre-

sponding expression is

𝜃0 + 𝜃1
𝜃2𝑦𝜃3𝑦

𝜃4
𝜃5𝑥𝜃6𝑥

𝜃7 + 𝜃8𝑦𝜃9𝑦
, (1)

which is obviously overparameterized with ten parameters.
This means that the values of e.g. 𝜃2 and 𝜃3 cannot be iden-
tified uniquely. Some of the redundant fitting parameters in
Equation 1 are introduced because Operon forces a multiplica-
tive coefficient for each input variable and additionally scales
all expressions linearly (𝜃0, 𝜃1). However, it is obvious that
other GP implementations may generate similar expressions.
We will study other GP implementations in more details in
Section 4.

Automatic algebraic simplification of the expression (e.g.
using Sympy) leads to the simplified form

𝜃′0 +
𝜃′1𝑦

2

𝜃′2𝑦
2 +

𝜃′3
𝑥2

(2)

with only four parameters. However, this form is still overpa-
rameterized and can be further simplified to:

𝜃′′0 +
𝜃′′1 𝑦

2

𝑦2 +
𝜃′′2
𝑥2

. (3)

The additional parameters in Equation 1 only increase com-
plexity but do not allow a better fit than the form with
only three parameters in Equation 3 because the number of
effective degrees of freedom of both expressions is the same.
The only advantage could be that the original tree could be
more evolvable because it provides more extension points to
improve the fit.

This example already shows that simplification can be
readily performed by computer algebra libraries, such as
Sympy, but there is the limitation that such simplification
does not necessarily lead to the expression with minimal
number of fitting parameters. For example, the order in
which rewriting rules are applied can have an effect on the
final result. If we have the expression:

𝑎(𝑏𝑥+ 𝑐𝑦)

𝑑
, (4)

where 𝑎, 𝑏, 𝑐, 𝑑 are fitting parameters and 𝑥, 𝑦 are the input
variables. If our set of rules is the following:

𝑎(𝑏+ 𝑐) → 𝑎𝑏+ 𝑎𝑐 (5)

𝑎𝑏 → 𝑏𝑎 (6)

(𝑎𝑏)/𝑑 → 𝑎(𝑏/𝑑). (7)

and the rules are to be applied in order, whereby operations
where both arguments are fitting parameters are merged to
a single parameter, the simplification steps would generate:

𝑎(𝑏𝑥+ 𝑐𝑦)

𝑑
= (8)

𝑎𝑏𝑥+ 𝑎𝑐𝑦

𝑑
= (9)

𝑎′𝑥+ 𝑏′𝑦

𝑑
, (10)

Reducing Overparameterization of Symbolic Regression Models with Equality Saturation GECCO ’23, July 15–19, 2023, Lisbon, Portugal

where 𝑎′, 𝑏′ are merged parameters. At this point, no other
rule can be applied. Now, if we apply the rule in order 2, 3, 2,
1 instead we would arrive at the expression (𝑎′𝑥+ 𝑏′𝑦) that
contains only two parameters instead of three. One way to
find the optimal order of rewrite rules is using EqSat [27] as
it will be explained in the next Section 3.

3 EQUALITY SATURATION

Equality saturation is a technique applied to compiler opti-
mizations and program synthesis [10, 20] that uses the data
structure called equality graph (e-graph) to compactly rep-
resent all equivalent programs generated by the repeated
application of rewrite rules. Given an initial program 𝑝, the
general idea is to apply any applicable rule to this program
storing all the generated equivalent programs in the structure.
We repeat these steps until the e-graph is not changed, thus
reaching the fixed point or saturation. When the e-graph is
saturated, it means that it represents all possible equivalent
programs for that specific set of rules and then we can extract
a single program from this graph that minimizes a cost func-
tion. Contrary to the simplification process described above
that destroys the current expression at every step, equality
saturation only adds new information to the graph.

In the following we will use lowercase letters starting with
𝑎 to match any expression tree (as a wildcard token). A
more complex pattern can be described as an expression of
different wildcards. So the pattern 𝑎+ 𝑏 will match any tree
with the operator + as the root and with any two child trees.
The pattern 𝑎+ 𝑎 will match a tree with + as the root but
with the constraint that both left and right children must
be exactly the same. A rewriting rule describes a pattern
that must be matched and how to rewrite such pattern. For
example, the rule 𝑎+𝑎 → 2*𝑎 says that every time we match
the pattern 𝑎+ 𝑎 we can replace it with 2 * 𝑎.

The e-graph is composed of a set of e-classes, each e-class
contains one or more e-nodes and each e-node represents a
symbol (variable, constant, or function). The edges of this
e-graph connects one e-node to an e-class with the property
that any e-node must have exactly as many outgoing arrows
as its arity and any e-class can have zero or more incoming
arrows. The e-class without any incoming arrow is the root
e-class and any e-node without outgoing arrows is a leaf
e-node; they mark the start and the end of a traversal. We
can extract an expression by traversing the e-graph starting
from any e-node of the root e-class and recursively traversing
each branch until it reaches a leaf. For example, refer to
the left e-graph in Fig. 2 where the e-classes are represented
by dashed boxes and the e-nodes by solid boxes. Starting
from the e-node + we can traverse the graph forming the
expression (1 * 𝑥) + 𝑥.

This same figure illustrates the process of applying rewrit-
ing rules to update the e-graph. Let us suppose our rules set
contains only the rules 1 * 𝑎 → 𝑎 and 𝑎+ 𝑎 → 2 * 𝑎. The only
pattern that matches in the left e-graph is 1 * 𝑎 for 𝑎 = 𝑥,
this rule creates a new e-node 𝑥 in the e-class containing *
indicating that any traversal departing from this e-class will

be equivalent to 𝑥. In this situation, the original e-class con-
taining another e-node 𝑥 is merged to this one, resulting in
the middle e-graph. This new e-graph can represent infinitely
many expressions such as 𝑥+𝑥, (1*𝑥)+𝑥, (1* (1*𝑥))+𝑥,
Finally, from the middle e-graph we can apply the first rule
again, resulting in the same e-graph, and the second rule, cre-
ating two new e-nodes, a * inside the first e-class and a 2 that
belongs to a new e-class. In this case, both * e-nodes cannot
be merged as they are not equivalent. This last e-graph can
now represent the expressions 2*𝑥, 2*(1*𝑥), 2*(1*(1*𝑥)), . . .
besides the previously expressions already represented in the
middle e-graph.

This figure illustrates the invariance property of the e-
graph stating that, any expression extracted departing from
a given e-class will be equivalent.

+

*

1 𝑥

(a)

+

* 𝑥

1

(b)

+ *

* 𝑥

1 2

(c)

Figure 2: (a) Original expression; (b) after applying
the rule 1 * 𝑥 → 𝑥; (c) after applying the rule 𝑥+ 𝑥 →
2 * 𝑥.

Since we keep all the generated equivalent expressions on
the e-graph, we explore all possible orders of applying the
set of rules. This procedure has two caveats that should be
addressed for practical use. First of all, even though the
e-graph compacts the storage of the equivalent programs,
depending on the expression and set of rules, the e-graph can
become excessively large or it may take a large amount of
time to reach saturation. This is often solved by imposing
a runtime, memory, and iteration limit. Another thing that
should be avoided is the use of rules that can create cycles
or induce an infinite sized expression.

In this paper, we use the Haskell library hegg1 based on
the Rust library egg2 to apply the simplification process.
These libraries implement optimized algorithms to build and
maintain e-graph invariants [10] and to query an e-graph for
a specific pattern [28]. These implementations also support
a scheduler that limits the number of rules applied at every
iteration and creates a tabu list to avoid repeated application
of the same rule in the same sub-expressions.

4 EXPERIMENTS

With the following experiments we demonstrate that sev-
eral well-known GP systems produce overparameterized SR
models and that the number of parameters can be greatly

1https://hackage.haskell.org/package/hegg-0.3.0.0
2https://docs.rs/egg/latest/egg/

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Fabŕıcio Olivetti de França and Gabriel Kronberger

reduced using EqSat with the proposed rule set, whereby
Sympy simplification is not sufficient. We chose two bench-
mark functions in which the generating function is non-linear
and six open-source GP implementations. We have limited
the detailed analysis of all GP systems to two benchmark
functions because the exact nature of the data only has a
small effect on the overparameterization issue. To demon-
strate the effects occur frequently we additionally performed
an analysis of Operon for a large set of benchmark instances.

We repeated the execution of each algorithm to each
dataset 30 times storing the best expression found in each
run. For each one of those expressions, we generated three
simplified expressions by: i) applying EqSat to the original
expression, ii) applying Sympy simplification algorithm to the
original expression, and iii) applying EqSat to the expression
simplified using Sympy. This last simplified expression was
generated to test whether applying a destructive simplifica-
tion algorithm creates a better initial point for the EqSat. As
a result, we obtained four expressions per run, the original
and the three simplified versions.

The comparison of the expressions of the 30 runs for a
benchmark-algorithm combination forms a single independent
experiment, totaling twelve experiments. These experiments
will provide evidence to how much this problem affect these
algorithms and how much the number of fitting parameters
can be reduced. A broader study of how widespread this
problem is for different combinations of algorithm and dataset
is left for a future research.

We chose the top five algorithms (EPLEX, FEAT, GP-
GOMEA, Operon, SBP) from SRBench [16], a recent bench-
mark of SR algorithms, and two additional recent implementa-
tions that reported competing results (Bingo, PySR), briefly
described below. From this initial selection we removed FEAT
due to a current bug3 that returns an ill-formed symbolic
expression. All of these algorithms, except for GP-GOMEA,
perform nonlinear optimization of the adjustable parameters
and Bingo also performs simplification with Sympy before
adjusting the parameters.

4.1 GP Implementations

Many recent SR algorithms apply nonlinear optimization to
determine the optimal parameters of a given expression. For
example, FEAT [17] creates a map of the original input space
to a transformed space by evolving multiple expression trees.
These trees are combined using ridge regression and the inner
coefficients of the tree are adjusted using backpropagation for
every differentiable subtree. This is also known as Multiple
Regression GP [1], when the algorithm produces a set of
smaller trees combining them with a linear regression. Notice
that if the algorithm does not allow parameters inside these
trees, they will not create redundant parameters such as in [6].
EPLEX [15] stands out from the chosen algorithms because
it uses an epigenetic representation and 𝜖-lexicase selection,
the parameter values are generated at random and optimized
using a hill-climbing algorithm.

3https://github.com/cavalab/feat/issues/287

GP-GOMEA [26] generates parameter values during the
initialization procedure and uses those throughout the iter-
ations with the recombination operators. Even though this
approach does not use parameter optimization, it is still capa-
ble of returning models with competitive accuracy and with a
small size. As already mentioned, overparameterization may
happen even without the use of parameter optimization.

Operon [3] implements nonlinear optimization for the nu-
merical parameters with the Levenberg-Marquardt approach.
It tends to use many parameters in expressions because it
enforces a multiplicative coefficient for each variable terminal
node and always adds two parameters for linear scaling of
the whole expression.

More recently, a GP implementation in Julia with a Python
interface, called PySR [5] (based on the Julia module Sym-
bolicRegression.jl), was proposed with the goal of finding
equations describing physical and engineering phenomena.
The main goal of this framework is to provide an efficient and
customizable SR implementation including constraints on
unwanted constructs (such as nesting of nonlinear functions).
This implementation can also use parameter optimization
with either the BFGS [7] or Nelder-Mead methods.

Semantic backpropagation genetic programming (SBP-
GP) uses semantically-aware operators to select the affected
subtrees that behave most similarly. This technique applies
affine transformations to improve the recombination opera-
tors and uses backpropagation to adjust the coefficients.

Bingo [23] was recently introduced as another Python
framework for GP capable of customization of different parts
of the algorithm. This framework provides a wrapper for
the fitness function so that the user can apply any param-
eter optimization that is more adequate for the problem.
In [2] Bayesian methods are used to optimize the parameters
and quantify their uncertainties. One interesting novelty of
this approach is that it simplifies the expression, using the
algorithm described in [4], before adjusting the parameters.

4.2 Datasets

As for the datasets, we chose two benchmark functions in
two variables Pagie-1 [22] (𝑓1) and Kotanchek [24] (𝑓2) for
the detailed analysis of all GP systems:

𝑓1(𝑥, 𝑦) =
1

1 + 𝑥−4
+

1

1 + 𝑦−4
(11)

𝑓2(𝑥, 𝑦) =
𝑒−(𝑥−1)2

1.2 + (𝑦 − 2.5)2
. (12)

Additionally, we analysed a huge set of models generated
with Operon for all instances from the Feynman SR bench-
mark set [25].

As in the original papers, we have generated noiseless
datasets with 1676 samples with 𝑥, 𝑦 ∈ [−5, 5] for 𝑓1 and
2125 samples with 𝑥, 𝑦 ∈ [−0.2, 4.2], for 𝑓2. We used the entire
set for training the model4 and executed each algorithm 30
times with different random seeds. We also used the default
4We do not use a test set because our objective is to analyze the
number of parameters of SR models and not the goodness-of-fit of the

Reducing Overparameterization of Symbolic Regression Models with Equality Saturation GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 1: Set of unconstrained rules used in this ex-
periment.

𝑎+ 𝑏 → 𝑏+ 𝑎 (𝑎 * 𝑏)/𝑐 → 𝑎 * (𝑏/𝑐)
𝑎 * 𝑏 → 𝑏 * 𝑎 𝑎− 0 → 𝑎
𝑎+ (𝑏+ 𝑐) → (𝑎+ 𝑏) + 𝑐 1 * 𝑎 → 𝑎
𝑎 * (𝑏 * 𝑐) → (𝑎 * 𝑏) * 𝑐 0/𝑎 → 0
𝑎 * (𝑏/𝑐) → (𝑎 * 𝑏)/𝑐 𝑎− 𝑎 → 0
0 + 𝑎 → 𝑎 (𝑎 * 𝑏) + (𝑎 * 𝑐) → 𝑎 * (𝑏+ 𝑐)
0− 𝑎 → −𝑎 𝑎− (𝑏+ 𝑐) → (𝑎− 𝑏)− 𝑐
0 * 𝑎 → 0 𝑎− (𝑏− 𝑐) → (𝑎− 𝑏) + 𝑐
−(𝑎+ 𝑏) → −𝑎− 𝑏 (1/𝑎) * (1/𝑏) → 1/(𝑎 * 𝑏)
𝑎− ((−1) * 𝑏) → 𝑎+ 𝑏 𝑎+ (−𝑏) → 𝑎− 𝑏
log(exp 𝑎) → 𝑎

hyperparameters for each algorithm with a common set of
values of 200 generations, population size of 500, maximum
tree length of 25 (when this choice was available), and the
operators set {+,−, *,÷, exp, log}.

4.3 EqSat Rules

To minimize the number of fitting parameters, we have used
a set of rules used for algebraic manipulation and additional
rules that aim at merging parameters. Notice that before any
rule is applied, it is assumed that any function applied to
parameter values will be replaced by the evaluated value. So,
we do not keep expressions such as exp(2 + 4) in the e-graph
and simply reduce it to its evaluated value.

The simplification rules are in the form 𝑒1 → 𝑒2 where 𝑒1
is an expression of a pattern that must be matched and 𝑒2
its replacement. For example, 𝑎+ 𝑏 → 𝑏+ 𝑎 will match any
expression tree with the operator + in its root and swap the
left and right children. The rule 0 * 𝑥 → 0 will match any
expression rooted at * and which the left child is the tree
0 and the right child is any tree and simply replace it with
0. Whenever the lowercase letters may match any subtree,
we will call it unconstrained rules, and they are reported in
Table 1.

Some rules can only be applied if the left hand pattern
abides to a certain condition. For example, the rule log(𝑎𝑏) →
log(𝑎) + log(𝑏) can only be applied if both 𝑎, 𝑏 are positive.
These are called constrained rules and the constraints are
described as log(𝑎𝑏) → log(𝑎)+log(𝑏),∀𝑎, 𝑏 > 0 for this same
example. These are called constrained rules and the set used
in this paper is reported in Table 2.

The last set of rules have a condition that some of the
pattern variables must be constant values (e.g., the fitting pa-
rameters). These rules, called parameters rules, are reported
in Table 3 and the variables that must be numerical values
are named 𝑎, 𝑏, 𝑐, 𝑑 and the subtree variables are 𝑥, 𝑦.

models. This is the reason why we are not concerned about the error
on an independent test set at the current stage of this research.

Table 2: Set of constrained rules used in this experi-
ment.

𝑎 * (1/𝑎) → 1,∀𝑎 ̸= 0
𝑎/𝑎 → 1, ∀𝑎 ̸= 0

log(𝑎𝑏) → 𝑏 * log 𝑎,∀𝑎, 𝑏 > 0
log(𝑎 * 𝑏) → log 𝑎+ log 𝑏, ∀𝑎, 𝑏 > 0
log(𝑎/𝑏) → log 𝑎− log 𝑏,∀𝑎, 𝑏 > 0
exp(log 𝑎) → 𝑎,∀𝑎 > 0

Table 3: Set of parameters specific rules used in this
experiment. In this set of rules the variables 𝑎, 𝑏, 𝑐, 𝑑
represents numerical values.

(𝑎 * 𝑥) * (𝑏 * 𝑦) → (𝑎 * 𝑏) * (𝑥 * 𝑦)
𝑎 * 𝑥+ 𝑏 → 𝑎 * (𝑥+ (𝑏/𝑎))
𝑎 * 𝑥− 𝑏 → 𝑎 * (𝑥− (𝑏/𝑎))
𝑏− 𝑎 * 𝑥 → 𝑎 * ((𝑏/𝑎)− 𝑥)
𝑎 * 𝑥+ 𝑏 * 𝑦 → 𝑎 * (𝑥+ (𝑏/𝑎) * 𝑦)
𝑎 * 𝑥− 𝑏 * 𝑦 → 𝑎 * (𝑥− (𝑏/𝑎) * 𝑦)
𝑎 * 𝑥+ 𝑏/𝑦 → 𝑎 * (𝑥+ (𝑏/𝑎)/𝑦)
𝑎 * 𝑥− 𝑏/𝑦 → 𝑎 * (𝑥− (𝑏/𝑎)/𝑦)
𝑎/(𝑏 * 𝑥) → (𝑎/𝑏)/𝑥
𝑥/(𝑏 * 𝑦) → (1/𝑏) * 𝑥/𝑦
𝑥/𝑎+ 𝑏 → (𝑥+ (𝑏 * 𝑎))/𝑎
𝑥/𝑎− 𝑏 → (𝑥− (𝑏 * 𝑎))/𝑎
𝑏− 𝑥/𝑎 → ((𝑏 * 𝑎)− 𝑥)/𝑎
𝑥/𝑎+ 𝑏 * 𝑦 → (𝑥+ (𝑏 * 𝑎) * 𝑦)/𝑎
𝑥/𝑎+ 𝑦/𝑏 → (𝑥+ 𝑦/(𝑏 * 𝑎))/𝑎
𝑥/𝑎− 𝑏 * 𝑦 → (𝑥− (𝑏 * 𝑎) * 𝑦)/𝑎
𝑥/𝑎− 𝑏/𝑦 → (𝑥− 𝑦/(𝑏 * 𝑎))/𝑎
(𝑏+ 𝑎 * 𝑥)/(𝑐+ 𝑑 * 𝑦) → (𝑎/𝑑) * (𝑏/𝑎+ 𝑥)/(𝑐/𝑑+ 𝑦)
(𝑏+ 𝑥)/(𝑐+ 𝑑 * 𝑦) → (1/𝑑) * (𝑏+ 𝑥)/(𝑐/𝑑+ 𝑦)
(𝑥− 𝑎) → 𝑥+ (−𝑎)
(𝑥− (𝑎 * 𝑦)) → 𝑥+ (−𝑎 * 𝑦)

4.4 Implementation Details

To avoid running EqSat indefinitely, the used library im-
plements a scheduler that limits the number of operations
performed at every iteration to 2500. The process is repeated
for 30 iterations and at every iteration it prioritizes the rules
not applied in previous iterations. As this limitation may pre-
vent reaching saturation, we do not have a guarantee that all
of the equivalent expressions will be represented on the final
e-graph. As such, we apply EqSat twice, first on the original
expression and next to the result of the first application. We
will see in the next section that these two steps approach is
enough to obtain the desired effect without increasing the
computational cost.

The cost function was designed to stimulate the minimiza-
tion of the number of parameters by assigning a higher cost
(5) to nodes for fitting parameters and a lower cost (1) to any
other node, as illustrated in Alg. 1. This unitary cost is nec-
essary to ensure we extract, in the first step, the expression

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Fabŕıcio Olivetti de França and Gabriel Kronberger

Algorithm 1 Cost function used to retrieve the equivalent
expression with fewest parameters.

1: function Cost(𝑛𝑜𝑑𝑒)
2: switch 𝑛𝑜𝑑𝑒 do
3: case 𝑜𝑝(𝑎, 𝑏)
4: return 𝐶𝑜𝑠𝑡(𝑎) + 𝐶𝑜𝑠𝑡(𝑏) + 1

5: case 𝑓(𝑎)
6: return 𝐶𝑜𝑠𝑡(𝑎) + 1

7: case 𝑣𝑎𝑟
8: return 1
9: case 𝑐𝑜𝑛𝑠𝑡

10: return 5
11: end function

with the most opportunity for re-parameterization in the next
step. Take as an example the expression (1/(𝑐1𝑥))* (1/(𝑐2𝑥)),
where 𝑐1, 𝑐2 are fitting parameters. And suppose that the
rule (1/𝑎) * (1/𝑏) → 1/(𝑎 * 𝑏) is applied in the last iteration
of the first step because of the scheduler limitations. Since
with all things being equal w.r.t. number of parameters, the
algorithm will return the expression with the least number
of nodes, when we apply EqSat again in the next step, it will
be able to merge these redundant parameters. A command
line interface to EqSat implementing these rules is available
at https://github.com/folivetti/srtree-eqsat supporting ex-
pressions generated by all of the tested algorithms and some
others not reported in this paper.

5 RESULTS

We can see the relative reduction in the number of parame-
ters for the Pagie-1 benchmark obtained with the different
simplification approaches for each algorithm in Fig. 3. In
this plot we can see that EqSat obtained models with up
to 50% fewer parameters. The reduction rate was larger on
Operon, EPLEX, and PySR. For Bingo and SBP the number
of parameters was reduced by 10% at most. GP-GOMEA
expressions could not be reduced in most of the cases. On
the other hand, simplifying expressions with Sympy led to
more parameters (values below the horizontal line) in some
cases. The only observable and consistent improvement was
obtained for the expressions generated by PySR. The combi-
nation of Sympy and EqSat improved the results obtained
with all but GP-GOMEA and SBP.

A comparison between approaches is reported in Fig. 4,
where the left plot shows how much better EqSat is compared
to Sympy and the right plot shows how much better EqSat is
compared to the combination of both. From this plot we can
see that EqSat often generates models with fewer parameters
than Sympy alone, while the combination of both approaches
produce consistently better results only for PySR.

Now, regarding Kotanchek function, we can see the ratio
of reduction in Fig. 5. From this figure we can see that the
application of EqSat always reduces the number of param-
eters, even for GP-GOMEA that had a rate of 0% for the
Pagie function. The opposite is observed when using Sympy.

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

−1.5

−1.0

−0.5

0.0

0.5
EqSat

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

Sympy

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

Sympy + EqSat

Figure 3: Boxplot of the ratio of decrease in number
of parameters of the expressions using EqSat (left),
Sympy (middle), and Sympy + EqSat (right) for the
Pagie-1 function. Values above the bold line indicate
a parameter reduction.

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

−0.5

0.0

0.5

Sympy x EqSat

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

Sympy + EqSat x EqSat

Figure 4: Boxplot of the ratio of decrease in number
of parameters of the expressions using EqSat versus
Sympy (left), and Sympy + EqSat versus Sympy
(right) for the Pagie-1 function. Values above the
bold line indicate that EqSat was more competent in
reducing parameters.

We can see from this plot that it increases the number of pa-
rameters for most algorithms. Finally, there is no advantage
when using the combination of both approaches, even though
it does improve upon the Sympy results. This is confirmed by
looking at Fig. 6 where we can see that EqSat is consistently
better than Sympy alone and the combination of both.

To check whether EqSat succeeds in removing all linearly
redundant parameters we compare the number of parame-
ters after simplification to the numeric rank of the Jacobian

matrix 𝐽(𝑥, 𝜃) =
(︁

𝜕𝑓(𝑥,𝜃))
𝜕𝜃1

, . . . , 𝜕𝑓(𝑥,𝜃))
𝜕𝜃𝑘

)︁
of the model. To

determine the numeric rank we use the singular value decom-
position of 𝐽(𝑥, 𝜃) as described in [14]. The numeric rank
of the Jacobian matrix gives the number of linearly inde-
pendent parameters in the function and therefore allows to
check whether EqSat with the given rule set is capable to
merge all linearly dependent parameters. The results shown
in Figure 7 demonstrate the effectiveness of EqSat as the

https://github.com/folivetti/srtree-eqsat

Reducing Overparameterization of Symbolic Regression Models with Equality Saturation GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

−1.5

−1.0

−0.5

0.0

0.5
EqSat

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

Sympy

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

Sympy + EqSat

Figure 5: Boxplot of the relative reduction of the
number of parameters using EqSat (left), Sympy
(middle), and Sympy followed by EqSat (right) for
the Kotanchek-1 function. Values above the bold line
indicate a decrease in the number of parameters.

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
−0.4

−0.2

0.0

0.2

0.4

0.6
Sympy x EqSat

Bing
o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P
Bing

o
EP

LEX

GP-G
OMEA

Ope
ronPyS

R
SB

P

Sympy + EqSat x EqSat

Figure 6: Boxplot of the relative reduction of the
number of parameters using EqSat versus Sympy
(left), and Sympy followed by EqSat versus Sympy
(right) for the Kotanchek function. Values above the
bold line indicate that EqSat was more competent in
reducing parameters.

Bin
go
EP
LEX

GP
-GO

ME
A
Op
ero
n
PyS

R
SB
P

(a)

0

2

4

6

Bin
go
EP
LEX

GP
-GO

ME
A
Op
ero
n
PyS

R
SB
P

(b)

0

2

4

6

Figure 7: Difference between the number of parame-
ters after EqSat simplification and the numeric rank
for (a) Pagie-1 and (b) Kotanchek benchmarks.

boxplot of the difference between the number of parameters
and the rank for the simplified expression with EqSat. For

Table 4: Percentage of the expressions in which EqSat
reduced the number of parameters to the same value
of the rank (∆ = 0) or with at most one extra pa-
rameter (∆ ≤ 1). The expressions that originally met
those conditions were removed from the count.

Algorithm Pagie-1 Kotanchek

∆ == 0

Bingo 27.78% 22.22%
EPLEX 28.00% 18.75%

GP-GOMEA 30.77% 76.47%
Operon 66.67% 74.07%
PySR 36.67% 34.48%
SBP 42.86% 60.87%

∆ ≤ 1

Bingo 33.33% 66.67%
EPLEX 45.45% 37.50%

GP-GOMEA 100.00% 100.00%
Operon 100.00% 94.44%
PySR 52.00% 71.43%
SBP 60.00% 100.00%

operon
0.0

0.2

0.4

0.6

0.8

1.0
Operon - EqSat

Figure 8: Relative reduction of the number of parame-
ters using EqSat for 183491 different models generated
by Operon using the Feynman benchmark data.

both datasets and all GP implementations the algorithm
finds an expression with minimal number of parameters with
a high probability. In most combinations, the median of this
difference is 1, meaning that the simplified expression has
one more parameter than the calculated rank. Table 4 sum-
marizes the number of expressions in which EqSat achieve a
certain difference from the numerical rank. From this table
we can see that EqSat is most successful with Operon and
SBP, possibly because how they envelope the nodes with re-
dundant parameters. But, even other approaches that either
use ERC, such as GP-GOMEA, or those that simplify the
expression internally, such as Bingo, can benefit from EqSat
reaching up to 76% of the ill-formed expressions properly
repaired and up to 100% of those expressions with only a
single extra parameter.

Finally, to verify whether this behavior is also observed
with different datasets, we have generated 183491 models
using Operon fitted on all SR Feynman benchmarks [25]

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Fabŕıcio Olivetti de França and Gabriel Kronberger

0 200 400
number of nodes

0

250

500

750

1000

1250
ru

nt
im

e
(m

s)
Number of nodes x Runtime (in ms)

Figure 9: EqSat runtime of each generated expression
for the Pagie-1 benchmark compared to the number
of nodes of each expression.

with varying amount of noise added to the target. The box-
plot in Fig. 8 depicts a similar behavior as observed in the
two previous benchmark problems, evidencing that the over-
parameterization is innate to the algorithm rather dataset
dependent.

Regarding the runtime, Fig. 9 shows the average time it
takes to simplify the expression using EqSat for all the gen-
erated trees of the Pagie-1 benchmark. The 𝑥-axis represents
the number of nodes and the runtime is measured in millisec-
onds. We can see from this plot that most of the expressions
with a size in the range of 1 to 100 nodes require a runtime
between < 1ms and 400ms. For larger expressions (between
100 and 500 nodes) we observed a runtime between 300ms
and 700ms. In a few cases, the runtime exceeded 1 second.

5.1 Discussion

From our experiments we can see that many GP algorithms
generate expressions with an excessive number of parameters.
Those implementations that use nonlinear optimization of
parameters seems to suffer more from this problem. From
the tested approaches, GP-GOMEA suffered the least with
this problem, though it still produced redundant parameters.
This is due to the fact that this algorithm prioritizes smaller
solutions, than the other implementations. Bingo also pro-
duced solutions with just a few redundant parameters due
to its internal simplification process.

Independent of the GP algorithm, EqSat consistently im-
proved the solution whenever the original expression con-
tained more parameters than its rank. It is worth noticing
that this approach never produced worse solutions. On the
other hand, Sympy was a hit or miss, often producing solu-
tions with more parameters than the original. This is not
surprising, because the Sympy simplification algorithm is not
designed to minimize fitting parameters, but it is one of the
few algebra libraries available for general use.

The runtime of EqSat can vary from less than 1ms to 1
second, depending on the characteristics of the expression.
The average runtime is 178±214 ms. With the average value,
it would require 178 seconds for every 1000 evaluations. This
is not an issue here, because we assume that only the best

expressions returned by the algorithm are simplified. With a
more conservative scheduler and with just a single step, the
runtime could potentially be reduced to a reasonable time to
be applied during the evolution process.

6 CONCLUSION

We investigated the problem of overparameterization in ge-
netic programming (GP) for symbolic regression (SR) and
how to merge the redundant parameters with equality satura-
tion (EqSat). Overparameterization of SR models decreases
the interpretability of the model. Different from common
simplification algorithms, EqSat can maintain multiple equiv-
alent expressions in its data structure and naturally explore
the application of different sequences of rewrite rules in par-
allel.

To test whether EqSat is capable to remove redundant
fitting parameters, we generated models using six GP imple-
mentations for two benchmark functions. We applied both
EqSat and the Sympy simplification algorithm to those mod-
els and measured the decrease in the number of fitting pa-
rameters as well as the difference between the rank of the
model and number of parameters.

The results showed that EqSat returned models with fewer
fitting parameters for most of the tested GP implementations
and, in the case that the original expressions contained no
redundant parameters, it simply returned the same expres-
sion. In contrast, the Sympy simplification algorithm often
increased the number of parameters, as it was designed with
other objectives in mind.

Comparing with the numerical rank of the models Jacobian
matrix, we can see that EqSat is capable of generating ex-
pressions with a number of parameters close to the numerical
rank with high probability. In comparison, some algorithms
produce expressions with up to seven more parameters than
the rank.

For future research, we will evaluate the benefits of this
simplification within three hypotheses: i) the nonlinear fitting
on the simplified expression converges faster, ii) the nonlinear
fitting is more robust to initialization, iii) the width of the
confidence intervals of the parameters are reduced. We will
also test whether applying EqSat on a selected set of solutions
throughout the evolutionary process can lead to improved
convergence.

ACKNOWLEDGMENTS

This research was funded by Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP), grant number 2021/12706-
1. G.K. acknowledges support by the Christian Doppler Re-
search Association, the Austrian Federal Ministry for Digital
and Economic Affairs and the National Foundation for Re-
search, Technology and Development within the Josef Ressel
Center for Symbolic Regression.

REFERENCES
[1] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. 2014.

Multiple regression genetic programming. In Proceedings of the

Reducing Overparameterization of Symbolic Regression Models with Equality Saturation GECCO ’23, July 15–19, 2023, Lisbon, Portugal

2014 Annual Conference on Genetic and Evolutionary Compu-
tation. 879–886.

[2] G. F. Bomarito, P. E. Leser, N. C. M. Strauss, K. M. Garbrecht,
and J. D. Hochhalter. 2022. Bayesian Model Selection for Reduc-
ing Bloat and Overfitting in Genetic Programming for Symbolic
Regression. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (Boston, Massachusetts)
(GECCO ’22). Association for Computing Machinery, New York,
NY, USA, 526–529. https://doi.org/10.1145/3520304.3528899

[3] Bogdan Burlacu, Gabriel Kronberger, and Michael Kommenda.
2020. Operon C++: An Efficient Genetic Programming Framework
for Symbolic Regression. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion (GECCO
’20). Association for Computing Machinery, internet, 1562–1570.
https://doi.org/doi:10.1145/3377929.3398099

[4] J.S. Cohen. 2018. Computer Algebra and Symbolic Computation:
Mathematical Methods. CRC Press. https://books.google.at/
books?id=0WO2zQEACAAJ

[5] Miles Cranmer. 2020. PySR: Fast & Parallelized Symbolic Regres-
sion in Python/Julia. https://doi.org/10.5281/zenodo.4041459

[6] Fabŕıcio Olivetti de França and Guilherme Seidyo Imai Aldeia.
2021. Interaction–Transformation Evolutionary Algorithm for
Symbolic Regression. Evolutionary computation 29, 3 (2021),
367–390.

[7] Roger Fletcher. 2013. Practical methods of optimization. John
Wiley & Sons.

[8] Andrew Gelman, Jennifer Hill, and Aki Vehtari. 2020. Regression
and other stories. Cambridge University Press.

[9] Frank E Harrell. 2017. Regression modeling strategies. Bios 330,
2018 (2017), 14.

[10] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali:
A goal-directed superoptimizer. ACM SIGPLAN Notices 37, 5
(2002), 304–314.

[11] Robert E Kass. 1990. Nonlinear regression analysis and its appli-
cations. J. Amer. Statist. Assoc. 85, 410 (1990), 594–596.

[12] Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and
Michael Affenzeller. 2020. Parameter identification for symbolic re-
gression using nonlinear least squares. Genet. Program. Evolvable
Mach 21, 3 (2020), 471–501.

[13] John R. Koza. 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA. http://mitpress.mit.edu/books/genetic-
programming

[14] Gabriel Kronberger. 2022. Local Optimization Often is Ill-
conditioned in Genetic Programming for Symbolic Regression.
arXiv preprint arXiv:2209.00942 (2022).

[15] William La Cava and Jason H Moore. 2019. Semantic variation
operators for multidimensional genetic programming. In Proceed-
ings of the Genetic and Evolutionary Computation Conference.
1056–1064.

[16] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabri-
cio Olivetti de Franca, Marco Virgolin, Ying Jin, Michael Kom-
menda, and Jason H. Moore. 2021. Contemporary Symbolic
Regression Methods and their Relative Performance. In Proceed-
ings of the Neural Information Processing Systems Track on

Datasets and Benchmarks. https://openreview.net/pdf?id=
xVQMrDLyGst

[17] William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri,
and Jason H Moore. 2018. Learning concise representations
for regression by evolving networks of trees. arXiv preprint
arXiv:1807.00981 (2018).

[18] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej

Čert́ık, Sergey B Kirpichev, Matthew Rocklin, AMiT Kumar,
Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. 2017. SymPy:
symbolic computing in Python. PeerJ Computer Science 3 (2017),
e103.

[19] Pablo Moscato. 1999. Memetic Algorithms: A Short Introduction.
In New Ideas in Optimization, David Corne, Marco Dorigo, and
Fred Glover (Eds.). McGraw-Hill, London, 219–234.

[20] Chandrakana Nandi, Max Willsey, Adam Anderson, James R
Wilcox, Eva Darulova, Dan Grossman, and Zachary Tatlock. 2020.
Synthesizing structured CAD models with equality saturation
and inverse transformations. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and
Implementation. 31–44.

[21] Michael O’Neill, Leonardo Vanneschi, Steven Gustafson, and Wolf-
gang Banzhaf. 2010. Open issues in genetic programming. Genetic
Programming and Evolvable Machines 11, 3 (01 Sep 2010), 339–
363. https://doi.org/10.1007/s10710-010-9113-2

[22] Ludo Pagie and Paulien Hogeweg. 1997. Evolutionary Conse-
quences of Coevolving Targets. Evolutionary Computation 5, 4
(Winter 1997), 401–418. https://doi.org/doi:10.1162/evco.1997.5.
4.401

[23] David L Randall, Tyler S Townsend, Jacob D Hochhalter, and
Geoffrey F Bomarito. 2022. Bingo: a customizable framework
for symbolic regression with genetic programming. In Proceed-
ings of the Genetic and Evolutionary Computation Conference
Companion. 2282–2288.

[24] Guido Smits and Mark Kotanchek. 2004. Pareto-Front Exploita-
tion in Symbolic Regression. In Genetic Programming Theory
and Practice II, Una-May O’Reilly, Tina Yu, Rick L. Riolo, and
Bill Worzel (Eds.). Springer, Ann Arbor, Chapter 17, 283–299.
https://doi.org/doi:10.1007/0-387-23254-0 17

[25] Silviu-Marian Udrescu and Max Tegmark. 2020. AI Feynman:
A physics-inspired method for symbolic regression. Science Ad-
vances 6, 16 (2020), eaay2631.

[26] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter AN
Bosman. 2017. Scalable genetic programming by gene-pool opti-
mal mixing and input-space entropy-based building-block learning.
In Proceedings of the Genetic and Evolutionary Computation
Conference. 1041–1048.

[27] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast and
extensible equality saturation. Proceedings of the ACM on Pro-
gramming Languages 5, POPL (2021), 1–29.

[28] Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary
Tatlock. 2022. Relational e-matching. Proceedings of the ACM
on Programming Languages 6, POPL (2022), 1–22.

https://doi.org/10.1145/3520304.3528899
https://doi.org/doi:10.1145/3377929.3398099
https://books.google.at/books?id=0WO2zQEACAAJ
https://books.google.at/books?id=0WO2zQEACAAJ
https://doi.org/10.5281/zenodo.4041459
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
https://openreview.net/pdf?id=xVQMrDLyGst
https://openreview.net/pdf?id=xVQMrDLyGst
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/doi:10.1162/evco.1997.5.4.401
https://doi.org/doi:10.1162/evco.1997.5.4.401
https://doi.org/doi:10.1007/0-387-23254-0_17

	Abstract
	1 Introduction
	2 Overparameterization in Genetic Programming
	3 Equality Saturation
	4 Experiments
	4.1 GP Implementations
	4.2 Datasets
	4.3 EqSat Rules
	4.4 Implementation Details

	5 Results
	5.1 Discussion

	6 Conclusion
	Acknowledgments
	References

