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Symbolic Regression



Let’s do science!

The core of our modern scientific knowledge is based on careful produc-
tion and analysis of experimental data.

* Specify a hypothesis.
* Collect data through experiments.

» Describe the measurements with a mathematical function.
* Replicate.
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Parametric Functions

4 Y

 Parametric functions on the form f(x; 6) compacts the data.
 Parameters can be used to adjust such function to the observations.
* Often determined by prior knowledge or well established models.
 Parameters summarize the data and highlight differences.
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Generic Models

Generic models are common patterns that can be used to describe a wide

range of phenomena...or an overparameterized model that can fit any
data.

Examples

 Linear models.

* Quadratic models.

» Exponential decays.
* Neural Networks.

* Random Forests.
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Generic Models (examples)

Linear Models

They capture the tendency of the data: ”as x increases, y tends to increase
too by a certain amount”.

Neural Networks

Flexible function that can mold to the data, but can also be too flexible
and capture noise. It creates a smooth interpolation of the data.
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Generic Models (examples)

Linear Models

They capture the tendency of the data: ”as x increases, y tends to increase
too by a certain amount”.

We want something in between!

Neural Networks

Flexible function that can mold to the data, but can also be too flexible
and capture noise. It creates a smooth interpolation of the data.
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Equation Discovery

Automating the process

* Relying on pre-determined parametric functions can capture just part
of the behavior (underfit).

* In other situations, it may capture the noise in the data collection
(overfit) or be too obscure.

* Ideally we should have a function that is capable of fitting that particu-
lar data and only that data (not entirely true).

* Equation Discovery is the task of automatically finding such function.

\
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aka Symbolic Regression
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This is also known as Symbolic Regression, and can be formalized as
the minimization of a loss function:

efgig)ﬁ(f(x; 0),y)
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Genetic Programming
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Genetic Programming (GP) searches for omputer programs to solve
problems, including symbolic regression.

\. J

gp nPop = do
p <- initialPopulation(nPop)
until convergence repeat
parents <- select-from(p)
children <- recombine(parents)
children' <- perturb(children)
p <- reproduce(p, children')
return best(p)
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Against opaque models’

Symbolic Regression is capable of achieving similar accuracy as other

ML models, while being more compact.
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'La Cava, William, et al. “Contemporary Symbolic Regression Methods and their
Relative Performance.” Thirty-fifth Conference on Neural Information Processing




What do we really want?

Not just accuracy!

 Accuracy-size tradeoff: simplest model with a good accuracy.

* The limiting behavior and smoothness of the function is also important.

* Many desiderata that are not captured by a single loss function, but
easily incorporated in SR.
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Additional Constraints

I got the knowledge!

We can incorporate prior knowledge to the search, such as:
* Shape constraints (e.g., f'(x) > 0).

* Limiting behavior (e.g., f(x) = 0 as x — o).

* Units (e.g., f(x) must be in meters).

* Physical constraints (e.g., include conservation laws).

* Incorporating multiple views of the data.

\. J
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Success Cases



Particle-Laden Flows?

~

* GP alone is capable of identifying models for two-
particle systems.

* Coupling GP and Graph Neural Networks, it is possible
to extend to n particles.

» Equal or better than human-created solutions for the i
Stoken flows.

* 1Y Ar+Bsin(6) +C.

Reuter, Julia, et al. “Graph networks as inductive bias for genetic programming:
Symbolic models for particle-laden flows.” European Conference on Genetic
Programming (Part of EvoStar). Cham: Springer Nature Switzerland, 2023.
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* GP was capable of creating a logistic model that models the dynamics
of conflict on Twitter.

* Better accuracy than Random Forests and Decision Trees.

» They observed a compound effect of number of tweets around a certain
topic during conflicts.

* A more homogeneous distribution of replies per tweets is associated
with non-conflicting topics.

* The skewness of the distribution of interactions act as a phase transition.

w

.

De Franca, Fabricio Olivetti, et al. “Understanding conflict origin and dynamics on
Twitter: A real-time detection system.” Expert Systems with Applications 212 (2023):
118748.
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Material Science®

7

» Hybrid models for stress-strain curves in aluminum alloys.
* SR is used to predict the calibration parameters of a known physical

model.
+ Insightful analysis on the effect of temperature and force on the mate-
rial, while keeping the expression simple.

4Kabliman, Evgeniya, et al. “Application of symbolic regression for constitutive
modeling of plastic deformation.” Applications in Engineering Science 6 (2021): 100052.
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 Parametric models of cloud cover.

Pareto front of models: linear models, traditional, SR, and NN.

SR produced a good balance between model complexity and accuracy
that could be further improved by manual inspection.

Physically plausible and understand the relationship of the variables.
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Supernovae®
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* Modeling the peak luminosity of type Ia supernovae.

+ Different data with different photometrics (red and green filters).

* Multi-view symbolic regression: find a single model that fits every
dataset independently.
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®Russeil, Etienne, et al. “Multiview symbolic regression.” Proceedings of the Genetic
and Evolutionary Computation Conference. 2024.
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Extensions




Shape-constraints’
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difference to f(x)
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"Kronberger, Gabriel, et al. “Shape-constrained symbolic regression—improving
extrapolation with prior knowledge.” Evolutionary computation 30.1 (2022): 75-98.
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Unit-aware 8

F =ma

F = Force (Newtons, N)
m = mass (Kilogams) kg) R
Q = acceleration (meters per second mS ) :

L

8Reuter, Julia, et al. “Unit-Aware Genetic Programming for the Development of
Empirical Equations.” International Conference on Parallel Problem Solving from Nature.
Cham: Springer Nature Switzerland, 2024.
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Multi-view®

f(X) = log(1/(A + exp(-B*X)))
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and Evolutionary Computation Conference. 2024.



Recommendations of softwares



PyOperon'’

High-performance C++ library with Python bindings

+ Competitive runtime, good accuracy

* Supports multi-objective optimization, many hyper-parameters to ad-
just to your liking.

* May overparameterize the model

\.

1%https://github.com/heal-research/pyoperon/




Customizable SR

* Good balance between runtime performance and accuracy.
+ Extremely flexible with lots of customization options.

* Not the optimal accuracy, need to perform post selectno process.

Mhttps://github.com/MilesCranmer/PySR
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Nonlinear dynamical systems

* Sparse Identification of Nonlinear Dynamical systems.
* Fast and accurate for ODE systems.

12https://pysindy.readthedocs.io/en/latest/examples/index.html
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Efficiency of search

 Improve efficiency of search using e-graphs.

* Returns a good balance of accurate, simple, and with small number of
parameters.

* Perform equally or better than Operon and PySR.

+ Integration with exploration tool (rEGGression).

* The creator is in front of you!

\.

3https://github.com/folivetti/eggp




Conclusion




Final Remarks

» Symbolic Regression is a powerful tool for
discovering equations from data.
» Help move science forward by automating
the process of equation discovery.
Neeoy « It still needs a post-search finetuning of the
symbolic regression + obtained model.
e-graphs = @ + A long way to go, but we are getting there!
We need your help!
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Python library and CLI

* pip install eggp
* pip install reggression
* pip install symregg

Open-source:

* https://github.com/folivetti/eggp
* https://github.com/folivetti/reggression
* https://github.com/folivetti/symregg
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rEGGression




rEGGression

» e-graph brings the essence of relational
databases into symbolic regression.
S * TEGGression can help us navigate the set of
symbolic regression + visited expressions during a search .
e-graphs = @ * many new features on the way.

\. J
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Pattern Matching

(egraph.top(3,
filters=["size <= 7"],
pattern="v0 + x0")

.style.format(fmt))

Id Latex  Fitness p .
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[4 . .
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Breaking up the expression

[Subtrees, optimize the unevaluated and insert new. ]
egraph.subtrees(100) egraph.optimize(93)

Expression  Fitness Expression Fitness

Xo -20.23 01 —5.43

6, ~14.12

BoXo -6.53 egraph.insert(”x0 "

X3 NaN (to + x1)")

x¥° +0,  NaN

0, x, NaN Expression Fitness

X0 +6,x, —1.32-107 xlo+ 043
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Modularity

egfinal.modularity(2, filters=["> 3"1)

(1201 +120/") - 62)

20 = (logre — k) ((fo(bo...2) - (fo(B5...5) - 7)) + b5)
9 (80 + 1) + 1)
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