Copyright | (c) Fabricio Olivetti de Franca 2022 |
---|---|
License | GPL-3 |
Maintainer | fabricio.olivetti@gmail.com |
Stability | experimental |
Portability | POSIX |
Safe Haskell | Safe-Inferred |
Configuration parsing and report generation.
Synopsis
- allFunctions :: [Function]
- data Task
- = Regression
- | RegressionNL Int
- | Classification Int
- | ClassMult Int
- data Algorithm
- data Penalty
- data Output
- = Screen
- | PartialLog String
- | EvoLog String
- data Config = Conf {}
- data MutationCfg = MutCfg {}
- dfltMutCfg :: MutationCfg
- data IOCfg = IOCfg {
- _trainFilename :: String
- _testFilename :: String
- _logType :: Output
- data AlgorithmCfg = AlgCfg {}
- dfltAlgCfg :: AlgorithmCfg
- data ConstraintCfg = CnsCfg {
- _penaltyType :: Penalty
- _shapes :: [Shape]
- _domains :: [(Double, Double)]
- _evaluator :: Maybe Evaluator
- dfltCnstrCfg :: ConstraintCfg
- getLogType :: Config -> Output
- getSeed :: Config -> Maybe Int
- getTask :: Config -> Task
- getNPop :: Config -> Int
- getNGens :: Config -> Int
- getTrainName :: Config -> String
- getTestName :: Config -> String
- getDomains :: Config -> [(Double, Double)]
- getImage :: Config -> Maybe (Double, Double)
- getMeasures :: Config -> [Measure]
- getShapes :: Config -> [Shape]
- getPenalty :: Config -> Penalty
- readConfig :: String -> IO Config
- parseConfig :: IniParser Config
Documentation
allFunctions :: [Function] Source #
Task can be Regression, Classification and One-vs-All Classification
Regression | |
RegressionNL Int | |
Classification Int | |
ClassMult Int |
Current algorithm implementation are traditional Evolutionary (GPTIR) and Feasible-Infeasible two-population for shape-constraint (SCTIR).
Type of penalty function
Output configuration
Screen | |
PartialLog String | |
EvoLog String |
Configuration data
data MutationCfg Source #
Mutation config
Instances
Read MutationCfg Source # | |
Defined in MachineLearning.Utils.Config readsPrec :: Int -> ReadS MutationCfg readList :: ReadS [MutationCfg] readPrec :: ReadPrec MutationCfg readListPrec :: ReadPrec [MutationCfg] | |
Show MutationCfg Source # | |
Defined in MachineLearning.Utils.Config showsPrec :: Int -> MutationCfg -> ShowS show :: MutationCfg -> String showList :: [MutationCfg] -> ShowS |
Dataset and logging configs
IOCfg | |
|
data AlgorithmCfg Source #
Algorithm configuration
Instances
Show AlgorithmCfg Source # | |
Defined in MachineLearning.Utils.Config showsPrec :: Int -> AlgorithmCfg -> ShowS show :: AlgorithmCfg -> String showList :: [AlgorithmCfg] -> ShowS |
data ConstraintCfg Source #
CnsCfg | |
|
Instances
Read ConstraintCfg Source # | |
Defined in MachineLearning.Utils.Config readsPrec :: Int -> ReadS ConstraintCfg readList :: ReadS [ConstraintCfg] readPrec :: ReadPrec ConstraintCfg readListPrec :: ReadPrec [ConstraintCfg] | |
Show ConstraintCfg Source # | |
Defined in MachineLearning.Utils.Config showsPrec :: Int -> ConstraintCfg -> ShowS show :: ConstraintCfg -> String showList :: [ConstraintCfg] -> ShowS |
getLogType :: Config -> Output Source #
getTrainName :: Config -> String Source #
getTestName :: Config -> String Source #
getDomains :: Config -> [(Double, Double)] Source #
getMeasures :: Config -> [Measure] Source #
getPenalty :: Config -> Penalty Source #
readConfig :: String -> IO Config Source #
parseConfig :: IniParser Config Source #
Read the config file and run the algorithm.